ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Processing-Microstructure-Property Relationships of Titanium and Titanium Alloys
Presentation Title Nanoindentation Studies and Bulk Mechanical Properties of Additively Manufactured Titanium Alloys
Author(s) Yu Zou
On-Site Speaker (Planned) Yu Zou
Abstract Scope Laser-based directed energy deposition (LDED) enables rapid near-net-shape fabrication of large-scale titanium components for aerospace applications. However, the poor tensile ductility of most as-deposited titanium alloys, particularly near- alloys, hinders their wide usage for critical load-bearing structures. Here we report that a high density of microscale shear bands (MSBs) can be activated in an LDED-produced Ti-6Al-2Zr-Mo-V alloy with dispersed microscale colonies to enhance its tensile ductility. Using high-speed nanoindentation and in situ scanning electron microscopy tensile tests, we correlate the local micromechanical properties and global mechanical behaviour of such a LDED-produced titanium alloy.Our study demonstrates that activating the MSBs provides a new opportunity to effectively enhance the ductility of LDED-produced titanium alloys and expedite the adoption of this additive manufacturing technology for critical structural applications.
Proceedings Inclusion? Undecided


Approaches to Improving Yield-strength without Compromising Strain-hardenability in β-Titanium Alloys
Conventional Ti Alloys for Aeroengines And Aircraft Landing Gear Beams—a Data-driven Analysis for Selection of Ti-based Alloys and Future Directions
Design of New Metastable Ti Alloys and Determinations of Their Deformation Mechanisms Active during Tensile Deformation
Dilatometric Study of Phase Transformations in Ti-407
Enhancing Low-cycle Fatigue Life of Commercially-pure Ti By Deformation At Cryogenic Temperature
Hierarchical Twinning Microstructure in the Metastable β Titanium Alloys
Insights from Three-dimensional Characterization of Twins in Titanium
Microstructure-based Equivalent Initial Flaw Size (m-EIFS) Distributions for Airframe Structural Components
Microstructure Evolution and Mechanical Behaviour of Two Phase (α+β) Ti-6Al-4V Alloy : An Effect of Heat Treatment Temperature and Duration
Nanoindentation Studies and Bulk Mechanical Properties of Additively Manufactured Titanium Alloys
Role of Oxygen on Phase Stability, Precipitation, and Deformation in Beta Titanium Alloys
Slip-twinning Interdependency in High-strength Alpha-beta Titanium Alloys
Tailoring Martensitic Transformation in Metastable Beta-Ti Alloys
Titanium Alloy Microstructures Produced by Additive Manufacturing and Deformation
Using Synchrotron X-ray Characterization to Understand Slip Processes in Titanium Alloys

Questions about ProgramMaster? Contact