ProgramMaster Logo
Conference Tools for 2022 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2022 TMS Annual Meeting & Exhibition
Symposium Structural Metamaterials
Presentation Title Topological States and Bandgaps in Dimerized Minimal Surfaces
Author(s) Massimo Ruzzene, Matheus Nora Rosa, Yuning Guo
On-Site Speaker (Planned) Yuning Guo
Abstract Scope We investigate periodic minimal surfaces as a platform for topological mechanical metamaterials. We specifically consider 1D and 2D lattices that are dimerized through parametrizations that respectively break C2 and C3v symmetries, and that form the bases for opening non-trivial band gaps, and for introducing interfaces that support topological valley modes. The existence of band gaps and of non-trivial interface modes is predicted through numerical simulations, and through vibration and wave propagation experiments conducted on additively printed samples. The results illustrate the confinement of topologically protected edge states along engineered interfaces and demonstrate the lack of significant backscattering at sharp corners. This study supports the vision of minimal surfaces as a general framework where geometrical modulations can be conveniently introduced in 1D, 2D and 3D assemblies to achieve novel and unusual mechanical and acoustic functionalities.
Proceedings Inclusion? Planned:
Keywords Mechanical Properties, Additive Manufacturing, Other

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D-printable Cactus and Spider-silk Hydrogel Composites for Next Generation Multifunctional and Sustainable Energy Absorptive Metamaterials
A Comparison of Energy Absorption Behavior of Additively Manufactured AlSi10Mg Honeycomb, Lattice and TPMS Cellular Structures under Quasistatic Compression
Architectured Bioinspired Alumina with a Metallic Nickel Compliant-phase
Bioinspired Hierarchical Architected Structures Via Additive Manufacturing
Combined Effects of Heterogeneity and Length-scale on Mechanical Properties of Lattice Metamaterials
Controlling Failure with Fractal Chiral Metamaterials
Design of 2D-Mechanical Metamaterials with Spinodal Topologies
Engineering Splat Based Features for Improved Damage Tolerance in Brittle Metamaterials
Exceptional Mechanical Properties of Additively Manufactured Nano-architected Materials with Complex Topologies
Flexibly Tunable Yet Strong Gear-based Mechanical Metamaterials
G-32: Coated Nano- and Micro-lattices via Magnetron Sputtering
G-33: Gaussian Process Regression as a Surrogate Model for the Computation of Dispersion Relations
High-stiffness Metamaterial Composite Structure with Plate Reinforced Strut-microlattice
Interpenetrating Chain Lattices with Tailorable Energy Absorption in Tension
Investigation on Mechanical Properties of Honeycomb-based Cellular Solids and Cylindrical Shells with Structural Hierarchy
Large-strain Compressive Response and Failure Mechanisms of Additively Manufactured Cubic Chiral Lattices
Machine Learning Design of Dynamic/Impact Behaviors
Machine Learning of Symbolic Expressions to Model Dispersion Curves in Metamaterials
Phase Field Modeling of Crack Propagation, Deflection and Delamination in Engineered Interfaces
Seeing Beneath the Surface: Estimating Interior Material Properties with Visual Vibration Tomography
Sensitivity and Uncertainty Quantification Analysis in Phononic Metamaterials through Complex-Variable Finite Element Method
Single Test Evaluation and Design of Directional Elastic Properties in Anisotropic Materials
Structural Locking in Multimodal Origami Metamaterials
Topological States and Bandgaps in Dimerized Minimal Surfaces
Viscoelastic Dynamics of Polymeric Phononic Materials

Questions about ProgramMaster? Contact programming@programmaster.org