ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium AI for Big Data Problems in Advanced Imaging, Materials Modeling and Automated Synthesis
Presentation Title Multi-property Graph Networks for Novel Materials Discovery
Author(s) Alexander New, Nam Le, Michael Pekala, Kyle McElroy, Janna Domenico, Christine Piatko, Elizabeth Pogue, Tyrel McQueen, Christopher Stiles
On-Site Speaker (Planned) Alexander New
Abstract Scope Machine learning (ML) approaches have the potential to accelerate material property prediction. Conventional approaches to materials discovery are expensive, but supervised ML models can rapidly screen large materials databases and identify candidates to test. When searching for a candidate, multiple properties will determine its relevance. Ideally, a single machine learning model could predict all desired properties for a given material. This is analogous to the ML concept of multi-task learning – by leveraging similarity between different prediction tasks, this single model will be better at prediction than a suite of property-specific models. We compare some state-of-the-art multi-task ML models to single-property models for predicting elastic material properties. These models often do not surpass single-property models, in contrast to existing findings in supervised learning. We present loss-surface curvature metrics that have the potential to explain this performance disparity, further suggesting research directions for multi-task ML to perform well for property prediction.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Feasibility Study of Machine Learning-assisted Alloy Design Using Wrought Aluminum Alloys as An Example
AI-enabled Platform for Autonomous Experimentation and Materials Discovery
Are Process-Structure-Property Relationships Useful for Materials Design?
A.I. Driven Sustainable Aluminum Alloy Design
B-1: Autonomous Closed Loop Synthesis of Gold Nanorods via a Modular Chemical-Handling Robotic Platform
B-2: Logistics Box Recognition in Robotic Industrial De-palletizing Procedure with Systematic RGB-D Image Processing Supported by Multiple Deep Learning Method
Data-driven Search for Promising Intercalating Ions and Layered Materials for Metal-ion Batteries
De Novo Inverse Design of Nanoporous Materials by Machine Learning
De Novo Molecular Drug Design Using Deep and Reinforcement Learning
Deep Learning-based Algorithms for X-ray Microtomography Analysis: Unravelling Challenges for 4D Experiments
Deep Learning Approaches for Accelerating Polymer Characterization
Deep Neural Networks for Laser Absorptivity Prediction from Synchrotron X-ray Images
Estimation of Sub-micron Carbide Sizes and Morphologies in Dual-Phase Steels from Light Optical Micrographs Using Generative Adversarial Networks
High-dimensional Neural Network Potential for Liquid Electrolyte Simulations: Applications to Li-ion Battery Materials
Machine Learning Enabled Stacking Fault Energy Prediction in Concentrated Alloys
Machine Learning for Accelerated Defect Dynamics in Materials
Machine Learning Guided Prediction of Rupture Time of 347H Stainless Steel
Multi-Fidelity Machine Learning for Perovskite Discovery
Multi-property Graph Networks for Novel Materials Discovery
Neural Network Prediction of Dynamical Electron Back-Scattered Diffraction Patterns Based on Kinematical Patterns
Phase Identification by Neural Networks Trained from Experimental and Theoretical Structure Data
Physics-informed Machine Learning for Selected Area Electron Diffraction Data Analysis
Rapid Metallic Alloy Development Leveraging Machine Learning
Real-time and Large FOV Ptychography through AI@Edge
Understanding Atomic-scale Mechanisms of Defect Dynamics in Rare Earth Nickelates by Machine Learning and Quantum Simulations

Questions about ProgramMaster? Contact programming@programmaster.org