ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Uncertainty Quantification in Data-Driven Materials and Process Design
Presentation Title Using Scalable Multi-Objective Bayesian Optimization to Develop Aluminum Scandium Nitride Molecular Dynamics Force Fields
Author(s) Jesse M. Sestito, Michaela Kempner, Tequila A. L. Harris, Eva Zarkadoula, Yan Wang
On-Site Speaker (Planned) Jesse M. Sestito
Abstract Scope Scandium (Sc) doped aluminum nitride (AlScN) exhibits improved piezoelectric properties. To fine tune the material properties for design purposes, an atomistic level understanding of the structure-property (S-P) relationships is needed. Molecular dynamics can be used to understand the S-P relationships. However, the limited availability of force fields has been a challenge for property predictions. In this work, a force field calibration method using scalable multi-objective Bayesian optimization is presented. Optimizations with three, six, and eight objectives are applied to calibrate AlScN force fields based on piezoelectric characteristics, modulus of elasticity, and lattice parameters at different doped levels. The performances of the different force fields are compared, and the performance of the higher dimensional objective problems is discussed. The highly scalable molecular dynamics force field development method is successfully implemented, resulting in the creation of several aluminum scandium nitride molecular dynamics force fields for piezoelectric applications at varying Sc dope levels.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Feature-rich Approach to the Characterization of High Temperature, Sulfate-induced Corrosion of Advanced Alloys
Active Learning for Density Functional Theory Simulations with DeepHyper
Anisotropic Creep Modeling and Uncertainty Quantification of an Electron Beam Melted AM Ni-Based Superalloy
Bayesian Calibrated Yield Strength Model for High-entropy Alloys
Bayesian Estimation and Active Learning of Data-driven Interatomic Potentials for Propagation of Uncertainty through Molecular Dynamics
Data-driven Modeling and Control for Temperature-controlled Shear Assisted Processing and Extrusion (ShAPE) using Koopman Operators
Data-driven Structure-property Mapping in Small Data Regime: Towards Increasing Generalizability
Efficient Phase Diagram Determination via Sequential Learning
Enabling the Fourth Paradigm of Multiscale ICME Models through Versatile Gaussian Process and Bayesian Optimization
Learning from Multi-source Scarce Data via Latent Map Gaussian Processes
Machine Learning of Phase Diagrams
Neural Network Surrogate Predictions with Uncertainties for Materials Science
Quantifying Uncertainty in Atomistic Exploration
Solving Stochastic Inverse Problems for Property–structure Linkages Using Data-consistent Inversion and Machine Learning
Thermodynamic Modeling with Uncertainty Quantification and its Implications for Intermetallic Catalysts Design: Application to Pd-Zn-Based Gamma-Brass Phase
Uncertainty Quantification of a High-throughput Local Plasticity Test: Profilometry-based Indentation Plastometry of Al 7075 T6 Alloy
Uncertainty Quantification of Constitutive Models in Crystal Plasticity Finite Element Method
Using Scalable Multi-Objective Bayesian Optimization to Develop Aluminum Scandium Nitride Molecular Dynamics Force Fields

Questions about ProgramMaster? Contact programming@programmaster.org