ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Thermal Transport in Crystalline and Non-crystalline Solids: Theory and Experiments
Presentation Title Influence of Irradiation-induced Microstructural Defects on the Thermal Conductivity of Single Crystal Thorium Dioxide
Author(s) Amey Rajendra Khanolkar, Zilong Hua, Marat Khafizov, Vinay Chauhan, Yuzhou Wang, Tiankai Yao, Lingfeng He, J. Matthew Mann, Anter El-Azab, Jian Gan, David Hurley
On-Site Speaker (Planned) Amey Rajendra Khanolkar
Abstract Scope Microstructural defects formed as a result of fission fragment damage are known to drastically alter thermal conductivity, a fuel property that governs the efficiency of a nuclear reactor. A fundamental understanding of radiation-induced effects on thermal transport is critical for the development of advanced fuels. Ion-irradiation has widely been used to simulate the effects of neutron-irradiation by seeding atomic-to-nanoscale defects of controllable size and density. In this work, we investigate the influence of microstructural defects, induced by ion-irradiation, on the thermal properties of single crystal thorium dioxide samples grown using the hydrothermal technique. The samples were irradiated using 1.7 MeV protons at room temperature. A laser-based modulated thermoreflectance technique was used to measure the thermal diffusivity and conductivity within the damaged ThO2 region. The experimentally measured thermal properties were compared with Boltzmann Transport Equation predictions, to determine the impact of various defect types on the thermal properties of ThO2.
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Advancing Insights into Phonon Thermal Transport with Theory/experiment Interactions
Determining the Impact of Material Microstructure on the Effective Thermal Conductivity Using Mesoscale Simulation and Modeling
Electronic Structure and Thermal Transport Measurement of GdxSb2-xTe3
Impact of Irradiation Induced Nanoscale Defects on Optical and Thermal Properties of Cerium Dioxide
Influence of Irradiation-induced Microstructural Defects on the Thermal Conductivity of Single Crystal Thorium Dioxide
Investigations of the Thermal Conductivity of UN
Lattice Thermal Conductivity of Quartz at High Pressure and Temperature from the Boltzmann Transport Equation
Mesoscale Modeling of Thermal Conductivity of a UO2 and BeO Composite Nuclear Fuel
Multi-scale Thermal Transport Characterization of Nuclear Fuels
Multi Scale Modeling of the Thermal Conductivity: Combining First Principle Calculations with Monte Carlo
Nano- and Micro-scale Thermal Transport in Swift heavy Ion Irradiated Oxides
Non-linear Thermal Resistance Trend with Increasing Bilayer Density
Nonlinear Stopping of Phonons in Thermoelectric Crystal PbSe
Phonon Dispersion and Linewidth in ThO2 Measured by Neutron Scattering
Physics-guided Machine-Learning Design of Aperiodic Superlattices with Maximum Localization of Coherent Phonons
Structural, Transport, Magnetic, and Thermodynamic Studies of Delta-phase of Uranium
Study of Thermal Transport Properties of Thorium Dioxide Single Crystals
The Degradation of the Thermal Conductivity of Oxide Nuclear Fuel
Thermal Transport in Crystalline Solids with Irradiation-Induced Defects: Computational Modeling and Experiments
Thermal Transport in Nanostructured Crystalline and Disordered Materials
Thermal Transport in ThO2
Thermal Transport Properties of Uranium Aluminides by First-principles

Questions about ProgramMaster? Contact programming@programmaster.org