ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Additive Manufacturing: Alloy Design to Develop New Feedstock Materials
Presentation Title Mechanical Alloying of Feedstock Powder for Additive Manufacturing by Selective Laser Melting: Aluminum Alloy Matrix Composites
Author(s) Ethan M. Parsons
On-Site Speaker (Planned) Ethan M. Parsons
Abstract Scope Ceramic-reinforced metal matrix composites (MMCs) are attractive materials for high-value defense and commercial components, but fabrication with MMCs is presently difficult, costly, and limited to components with simple geometries. Additively manufacturing particulate MMCs with selective laser melting (SLM) would be an ideal method, but the laser consolidation of these materials has been largely unsuccessful in matching the properties of conventionally produced MMCs. The challenges include spreading the heterogeneous powder, distributing the ceramic particles, and forming a strong bond between the metal and the ceramic. Here, we use mechanical alloying to fabricate composite powders with morphology tuned for SLM process conditions. Using SLM, we achieve nearly fully dense consolidation of these powders and thereby demonstrate the potential for MMC feedstock powders to be produced with scalable, cost-effective methods.
Proceedings Inclusion? Undecided

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Characterization of Cracks Formed in “Weldable” AA6061 and Implications for Alloy Design
Accidental Alloy Development: In-situ Evolution of AM Powder and Opportunities for New Material Synthesis Pathways
An Interdisciplinary Approach for Alloy Design for Additive Manufacturing
Application of Taguchi, Response Surface, and Artificial Neural Networks for Rapid Optimization of Direct Metal Laser Sintering Process
CALPHAD Informed Design of Rare-earth Containing Alloys for Additive Manufacturing
Characterization of Spatter with Organized Features in Laser Powder Bed Fusion
Development of Oxidation Resistant Multi-Principle Element Alloys Applied with Additive Manufacturing
High-Throughput Accelerated Alloy Development
Laser Additive Manufacturing of Nanocomposite Powders
Mechanical Alloying of Feedstock Powder for Additive Manufacturing by Selective Laser Melting: Aluminum Alloy Matrix Composites
Micro-crack Mitigation by Alloy Modification in the Additively Manufactured Ni-base Superalloy CM247LC
Microstructure and Property Variability in DED Inconel 718 as a Function of Build Rate
Opportunities to Improve the Mechanical Properties of Titanium Alloys Produced by Laser Powder Bed Fusion
Optimization of Nitrogen-Atomized 17-4 Stainless Steel Feedstock for AM Processing
Processing of Y2O3-modified Nickel Superalloy by Selective Laser Melting.
Residual Stress Mitigation of Additive Manufactured Stainless Steel 316L Components through the Directed Energy Deposition Inclusion of TiC Nanoparticles
Sensitivity Analysis and Composition Design for Metal Additive Manufacturing Using CALPHAD-based ICME Framework

Questions about ProgramMaster? Contact programming@programmaster.org