ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Energy Materials for Sustainable Development
Presentation Title Thermoplastic Elastomers for High Performance Barocaloric Cooling
Author(s) Naveen Daham Weerasekera, Kameswara Pavan Kumar Ajjarapu , Kavish Sudan, Gamini Sumanasekera, Kunal Kate, Bikram Bhatia
On-Site Speaker (Planned) Naveen Daham Weerasekera
Abstract Scope Solid state refrigeration (SSR) represents a promising alternative to vapor compression refrigeration systems which have a high global warming potential. In comparison to other SSR technologies, systems based on the barocaloric effect – temperature/entropy change in response to hydrostatic pressure – remain relatively unexplored. Soft materials are attractive candidate materials for SSR due to their low cost, high compressibility and large barocaloric response. In this work we investigate the barocaloric performance of commercially available block copolymer thermoplastic elastomers. We experimentally characterize the mechanical, thermal and barocaloric properties of these materials, and evaluate their potential for SSR. We measured a normalized refrigeration capacity as high as 42 kJ K-1 GPa-1 for a 65℃ temperature span at relatively low pressures (<100 MPa), and a quasi-adiabatic temperature change of 28 oC (applied pressure: 434 MPa). These results demonstrate the superior barocaloric properties of thermoplastic elastomers and their promise for next generation SSR devices.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Metal-insulator Transition in a Complex Oxide at T ≥ 293K
A Thermodynamic and Properties Database for Permanent Magnetic Materials
Ab Initio Modeling of Ionic and Electronic Conductivity of La2NiO4+δ Cathode Material for Solid Oxide Fuel Cell
Bandgap Engineering and Electrochemical Properties of Disordered LaFeO3 and Heterostructures
Bulk Nanostructured Oxide-metal Composites for Wind Turbines and Electric Vehicles
Calcium Cobaltate Based Composite Ceramics for Thermoelectric Energy Harvesting
Caloric Materials for New Heat-management Technologies
Ceramic-based Solid-state Sodium-ion Batteries Fabricated in a Single Step via Cold Sintering
Computational Study of Iron/Nitrogen Doped Carbon Electrocatalysts for Sustainable Energy Technology
Cycling Demonstration of Sequential Deposition Synthesis-synthesized Lithium Garnet Films in Full Batteries
Design, Modeling, and Direct Write Additive Manufacturing (DWAM) of Electrodes for Batteries
Detection of Proton Incorporation and Diffusion in Electrolyte Materials for SOFCs
Effect of Infiltrates on Cr-poisoning in Solid Oxide Fuel Cell Cathode Using Microstructurally Resolved HPC Simulations of Electrochemistry
Electret Energy Sources Based on Electrical Conductors
Electronic Structure Calculations of Materials Converting Energy: Thermoelectrics and Ion Batteries
Electrospun Vanadium Pentoxide Nanofibers as a Photocathode in a Light Rechargeable LIB
Experimental and Computational Investigations of the Multiple Impurities Effects on the SOFC Cathode Materials
Fabrication Strategies for Lightweight and High-performance Tubular Solid Oxide Fuel Cells
Highly Stable and Efficient Perovskite Solar Cells with Functional Nanocomposites
Iron Oxide Redox Cycling for Low-cost Iron-air Batteries
L-13: Cu2O Single Crystal Synthesis via Strain-Induced Abnormal Grain Growth
L-14: Effects of Activation on Generated Biochar from Co-pyrolyzed Soursop Seeds (Annona muricata) and Mango Seeds (Magnifera indica) Biomass.
L-15: Electrochemical Properties of a Titanium-Substituted KVPO4F Cathode for K-Ion Batteries
L-16: Nucleation and Growth of Cu2O: Effect of pH, Potential and Substrate
L-17: Proton Conducting Layered Perovskites of the Form Ba5Er2Al2ZrO13
L-18: Thin-Film Glassy Solid Electrolytes Enabling High Energy Density Li Solid State Batteries
Low-temperature Integration of Oxide-based All-solid-state Batteries Using a Ceramic Binder
Machine Learning Methods for Predicting Microstructural Changes in Solid Oxide Cell Electrodes
Metal Composite Nano-Catalyst Enhanced Solid Oxide Fuel Cell Anodes for Increased Stability within Hydrocarbon Containing Fuels
Molecular Pathways to Al2S3 for Next Generation Battery Application
Molecular Precursors for Li2S as Cathode Material for Sustainable Energy Storage
Multi-layer Numerical Modeling of Selective Laser Melting Based Additive Manufacturing of Thermoelectric Powders
Non-precious Metal Catalysts with Core@shell Structure for AEM Electrolyzers
Probing BaCo0.4Fe0.4Zr0.2-XYXO3-δ Triple-Conductors as Cathode Materials for Protonic Ceramic Fuel Cells
Processing and Characterization of Li7La3Zr0.5Nb0.5Ta0.5Hf0.5O12 High-entropy Li-garnet Electrolyte
Properties of Carbon Nanotube Composite Conductors for High Performance Propulsion Motors
Self-propagating High Temperature Synthesis of Chevrel Phase Sulfides from Elemental Precursors
Sustainable Bio-Engineered Magnetoelectric Nanogenerator to Convert Ambient Stray Magnetic Noise to Electricity
Synthesis of Ce-Doped NaSICON Using Mechanical-Activation-Enhanced-Process
The Development of a Machine Learning Guided Process for the Additive Manufacturing of Thermoelectric Materials
Thermoelectric Properties of Additively Manufactured Fe3Al2Si3
Thermoplastic Elastomers for High Performance Barocaloric Cooling

Questions about ProgramMaster? Contact programming@programmaster.org