ProgramMaster Logo
Conference Tools for 2021 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2021 TMS Annual Meeting & Exhibition
Symposium Additive Manufacturing Fatigue and Fracture V: Processing-Structure-Property Investigations and Application to Qualification
Presentation Title 3-D Convolutional Neural Networks for Pore Analysis in Metal Additive Manufacturing Builds
Author(s) Andrew R. Kitahara, Ziheng Wu, Srujana Rao Yarasi, Nihal Sivakumar, Anthony D. Rollett, Elizabeth A. Holm
On-Site Speaker (Planned) Andrew R. Kitahara
Abstract Scope Pore structures are of significant interest in metal additive manufacturing (AM) because of their direct relation to mechanical properties. We extend a 2D powder particle characterization tool for application to 3D AM pores. As-built and powder specimens are imaged in 3-D with CT. The pores are segmented from the bulk material, and a pretrained 3-D convolutional neural network (3DCNN) is used as a feature descriptor for the pores. These pores are then clustered via K-Means into a small number of unique morphological types, which are easily verified by human inspection to have similar appearance, shape, size, morphology, and so on. Individual pores can be classified, using machine learning, as intrinsic, keyhole, or lack of fusion porosity. Further, the distribution of pore types can be associated with build parameters. We demonstrate the methodology of our approach and discuss how this analysis tool fits within the framework of exploring process-structure-property relationships.
Proceedings Inclusion? Planned:

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3-D Convolutional Neural Networks for Pore Analysis in Metal Additive Manufacturing Builds
Automotive-specific Requirements for Additive Manufacturing of Metal Materials
Bayesian Inference of Elastic Constants and Texture Coefficients in Additively Manufactured Alloys Using Resonant Ultrasound Spectroscopy
Characterization of 3D-printed Metals with Ultrasonic Technique
Cold Spray of Al and 6061 Al Alloy Powders: Effects of Oxide Thickness
Critical Fracture Toughness of Al 6061 Cold Spray Deposits
Damage Tolerant Approach in Additively Manufactured Metallic Materials
Defect-based Fatigue Model for AlSi10Mg Produced by Laser Powder Bed Fusion Process
Design of Fatigue Resistant Additive Manufactured Austenitic Stainless Steels
Effect of Defects on Stress State Dependent Fracture of Additively Manufactured Metals
Effect of Laser Power, Laser Spot Size and Hatch Spacing on Mechanical and Microstructural Properties of 316L Stainless Steel Processed via Selective Laser Melting
Effect of Oxide and Hydroxide on Cold Spray of Titanium Particles
Effect of Thickness on Ultrasonic Fatigue Behavior of 316L Stainless Steel Made by Powder Bed Fusion Additive Manufacturing
Fatigue Crack Growth and Fracture Toughness Behavior of Laser Powder Bed Fusion Titanium Alloys
Fatigue Crack Growth Rate of Electron Beam Melted (EBM) Titanium Alloy (Ti-6Al-4V): Effect of Crystallographic Texture and Internal Porosity
Implementing Processing Strategies and Unique Hot Isostatic Pressing Treatments to Control Microstructure, Defect Content, and Mechanical Properties of Electron Beam Melted Ti-6Al-4V
Interplay between Geometry, Defects, and Porosity on the Mechanical Behavior of AM Components
Laser Powder Bed Fusion of Hydride-dehydride Ti-6Al-4V Powders: Effect of Hot Isostatic Pressing on Microstructure and Mechanical Properties
Laser Powder Bed Fusion of TiTa Alloys: Process Optimisation and Fatigue Properties
Managing Heat Buildup and Standardizing Melt Pool Dimensions in Laser Powder Bed Fusion through a “Powder Moat” Scan Strategy
Mechanical Behavior of Induced Lack of Fusion Flaws in AlSi10Mg
Microstructural Heterogeneity and Mechanical Anisotropy of 18Ni-330 Maraging Steel Fabricated by Selective Laser Melting: The Effect of Build Orientation and Height
Microstructure-based Model Validation and Predictions of Single-build-plate Fatigue Strength Sensitivity for Additively Manufactured Ti-6Al-4V
Notch Sensitivity of AlSi10Mg Aluminum Alloy Produced by Laser Powder Bed Fusion Process
Progressive Amplitude Fatigue Performance of Additively Manufactured Stainless Steel Superalloy
Quantifying Layer Uniformity in Ti6Al4V Hybrid Additively Manufactured Samples Using Ultrasound
Quantifying Surface Roughness in Additive Manufactured Ti-6AI-4V Using In-situ X-ray Imaging
State-of-the-Art in Predicting Fatigue Life for Applications in Metal-based Additive Manufacturing
Strain Accumulation during Fatigue and Fracture of Additively Manufactured Ti6Al4V: Experiments and Simulations
Structure-property Relationships to Explain the Elasto-plastic Anisotropy of Additively Manufactured Metal Alloys
Synchrotron Imaging of the Influence of TiB2 in Suppressing Hot Cracking during Laser Powder Bed Fusion of Al-2139
Synergistic Effects of Defects and Microstructure on Fatigue Behavior of LB-PBF Metallic Materials
Tensile and Fatigue Behavior of Cold Sprayed Material Using Heat Treated Feedstock Powders
The Inhomogeneous Microstructure and Properties of Ti-6Al-4V Additively Manufactured with Electron Beam Freeform Fabrication
Towards Validation for Computed Tomography Processes for Additive Manufacturing
Ultrasonic Nondestructive Characterization of Hybrid Additively Manufactured 420 Stainless Steel
Using Post Build Porosity Analysis to Inform Future Build Strategies
Variation and Impact of Surface Roughness on Fatigue in Laser Powder Bed Fusion

Questions about ProgramMaster? Contact programming@programmaster.org