ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales II
Presentation Title Combining Multi-scale Modeling and Three-Dimensional Diffraction to Investigate Chemical and Displacement Ordering in Metallic Alloys
Author(s) Yu U. Wang, Yongmei M Jin, Yang Ren, Xiaoxu Guo, Liwei Geng
On-Site Speaker (Planned) Yu U. Wang
Abstract Scope A multi-scale material modeling is developed by integrating Density Functional Theory computation, microelasticity, and Monte Carlo simulation. Treating the total energy of an alloy as a sum of the energies of short-range chemical bonding and long-range elastic interaction, the model is applied to simulate disorder-order transitions of chemical and displacement natures and investigate long-range and short-range ordering phenomena. Computational diffraction of Bragg reflection and diffuse scattering are subsequently performed and compared with complementary experiments of three-dimensional high-energy synchrotron X-ray single-crystal diffraction, which are carried out to measure the fundamental and superlattice Bragg reflection peaks and diffuse scattering intensity distributions. As examples, the combined computational and experimental approach is applied to study atomic ordering in Fe-Ga alloys and displacement ordering in Ni-Mn-Ga alloys.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Applications of Computational Polarized Light Microscopy for Large Area Orientation Determination of alpha-Titanium
Bridging Computational Modeling and In Situ Experiment to Decipher Microscopic Deformation Mechanics
Characterization of 3-D Slip Fields in Deforming Polycrystals
Combining Multi-scale Modeling and Three-Dimensional Diffraction to Investigate Chemical and Displacement Ordering in Metallic Alloys
Design of an Austenitic Steel Weldment System Using ICME
Development of a Reactive Forcefield to Model Cu-Ni Alloy Oxidation and Surface Segregation in Thermal Conditions
Diffraction Elastic Constants from Electron Backscatter Diffraction Data and Finite Element Models
Directionally-anisotropic Mobility of Faceted Boundaries Explained through Interfacial Dislocation Mechanisms
ECCI Image Simulations for Arbitrary Defect Displacement Fields
Electron Backscatter Diffraction Pattern Simulation for Interaction Volume Containing Lattice Defects
Experimental Capabilities at High Pressure Collaborative Access Team (HPCAT) for In-situ and In-operando Characterization of Pressure/Stress Induced Microstructural Changes in Materials
Integrating Materials Models and Dynamical Electron Diffraction Simulations for Dislocation Analysis using STEM-Defect Contrast Imaging
Investigating the Microstructural Origins of Hydrogen Effects on Deformation and Fracture
Novel Remapping Method for HR-EBSD Based on Computer Vision Algorithm
On the Characterization of Twin-twin Interactions in Mg and Its Alloys
Predicting the Stress Strain Behavior of Nickel Single Crystal Through an Integrated First-principles Calculation and Crystal Plasticity Finite Element Modeling Approach
Regulating Elastic and Plastic Deformations by Microstructure Design and Coupling between Deformation and Phase Transformation - An Integrated Modeling and Experimental Study
Strong strain hardening in ultrafast melt-quenched nanocrystalline Cu: the role of fivefold twins
Synchrotron X-ray Tools for Multiscale Studies of Microstructure Evolution
Texture Evolution of Individual Layers during Accumulative Roll Bonding of Fe-Cu Metallic Laminates
Twinning Nucleation in Hexagonal Close-packed Crystals
Ultra-high strength and plasticity mediated by partial dislocations and defect networks

Questions about ProgramMaster? Contact programming@programmaster.org