ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting MS&T23: Materials Science & Technology
Symposium Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales V
Sponsorship TMS: Computational Materials Science and Engineering Committee
TMS: Shaping and Forming Committee
TMS: Materials Characterization Committee
TMS: Advanced Characterization, Testing, and Simulation Committee
Organizer(s) Mariyappan Arul Kumar, Los Alamos National Laboratory
Irene J. Beyerlein, University of California, Santa Barbara
Levente Balogh, Queen's University
Caizhi Zhou, University of South Carolina
Lei Cao, University of Nevada
Josh Kacher, Georgia Institute of Technology
Scope This symposium will provide a platform for researchers working on the state-of-the-art of multiscale modeling of materials, microstructural characterization, and small-scale mechanical testing to understand the mechanical behavior of crystalline metals.

Background and Rationale: The mechanical behavior of crystalline metals strongly depends on microstructure and the evolution of microstructure at different length scales. Examples include changes in crystallography, defect content and distribution, grain morphology, interfaces, and texture. The success behind the development of multiscale predictive model relies on finding and exploiting the synergies between modeling and experiments. In recent years intense efforts have been dedicated to advancing atomistic, micro, meso and macro-scale simulations tools and bridging them to understand the structure-property relationship. Achieving this goal requires a strong connection between models and experimental characterization techniques at different length scales. This symposium aims to encourage scientists/researchers from diverse areas of materials science and engineering to present recent achievements, identify challenges in developing multiscale material models from the atomic scale to the macro scale, and discuss connections with advanced experimental techniques.

The subject areas of the symposium include, but are not limited to:
1. Structural, functional and nuclear materials
2. Dislocations, deformation twins, phase transformation and recrystallization
3. Atomistic modeling
4. Dislocation dynamics and phase field modeling
5. Crystal plasticity models
6. Advanced X-ray and neutron diffraction techniques
7. Advanced microscopy techniques including HR-(S)TEM, HR-EBSD, PED and in-situ TEM and SEM
8. Emphasis on integrating experiments with modeling for guidance/validation
9. Experimentally aided Multi-scale Material Modeling

Abstracts Due 05/08/2023

A Rule-free Computational Prediction of the Slip-interface Reaction and the Subsequent Microstructure Evolution in Heterogeneous Materials under Deformation
A Solid Solution Strengthening Model with Ab Initio Calculations and Experiments for Solid Solution Al Alloys
An Investigation on the Microstructural Uncertainty in Molecular Dynamic Simulations of Polycrystalline Nickel
Assessing the Predictive Capabilities of Precipitation Strengthening Models for Deformation Twinning in Mg Alloys Using Phase-field Simulations
Coupled Crystal Plasticity and Phase-field Fracture Model for Single Crystal Plastic Deformation and Failure Prediction
Crystal Plasticity Modeling of Ti-6Al-4V Alloy under Uncertainty with Surrogate Optimization and Experimental Validation
Deformation Behavior of Lightweight Clad Sheet: Experiment and Modeling
Diffusion in Curved Grain Boundaries
Effects of Defects on Stress- and Thermally-induced Martensitic Transformation of Nanocrystalline NiTi Alloys: A Molecular Dynamics Study
From Anti-Arrhenius to Arrhenius Behavior in a Dislocation-obstacle Bypass
Hole Expansion Testing of Thin Sheet Materials at Various Strain Rates for Advanced Constitutive Model Calibration
Measurement and Modeling of Hydride Induced Rotation and Dislocation Fields in Zirconium Polycrystals
Micromechanical Modeling of Additively Manufactured Inconel 625 Informed by in situ High-energy X-ray Diffraction
Misorientation Effects in Single Crystal Plasticity Finite Element Modeling
Modeling Grain Boundary Mediated Plasticity with Massively Parallel Atomistic Simulations
Monte Carlo Grain Growth Simulations of Discontinuous Changes in Grain Boundary Velocity Induced by Grain Boundary Transformations
Plastic Deformation and Failure Predictions of Al-6061 with Inhomogeneities Using Finite Element Modeling Techniques Across Different Length Scales
Prediction and Quantification of Suzuki Segregation at Stacking Faults in FCC-based Alloys and Compounds
Prediction of Forming Limits for Austenitic Stainless Steel Tubes
Quantifying the Role of Coarse Intermetallic Particles on Twinning Behavior
The Contribution of the Platform MaterialDigital (PMD) in Building Up a Materials Data Space – Application to Mechanical Testing
The Role of Plastic Anisotropy on the Reorientation Trajectories of BCC Polycrystals
Unravelling the Nucleation and Growth Mechanism of {11-22} Twin in Titanium
Validation Experiments Developed for Casting Modeling

Questions about ProgramMaster? Contact