ProgramMaster Logo
Conference Tools for MS&T25: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting MS&T25: Materials Science & Technology
Symposium Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials
Sponsorship ACerS Basic Science Division
ACerS Electronics Division
ACerS Energy Materials and Systems Division
ACerS Engineering Ceramics Division
Organizer(s) Haitao Zhang, University of North Carolina at Charlotte
Gurpreet Singh, Kansas State University
Kathy Lu, University of Alabama Birmingham
Edward P. Gorzkowski, Naval Research Laboratory
Michael Naguib, Tulane University
Sanjay Mathur, University of Cologne
Wonmo Kang, Arizona State University
Babak Anasori, Purdue University
Scope Nanostructured materials (nanoparticles, nanowires, nanosheets, etc.) show great promise to enable a broad range of new applications as well as improve existing technologies because of their unique size-dependent physical and chemical properties. These include materials for energy applications (e.g., catalysts for sustainable hydrogen generation, electrodes for fuel cells and batteries, etc.), semiconductors for optical and optoelectronic applications including solar cells, piezoelectric and ferroelectrics for sensors, biomaterials for medical applications, high strength nanocomposites for structural applications, extreme environment materials for harsh conditions, etc. However, many barriers still exist in understanding and controlling the processing of nanostructured materials. Novel nanostructure designs are critically needed at all stages of nanoscale material formation processes to enable unique performances, low cost, and green engineering. Great challenges also remain on the composition and morphology control of multi-component functional nanomaterials.

This symposium will focus on the following general topics: 1) Synthesis, growth mechanism study, and structural characterization to preserve and improve nanoscale dimension, structure, and properties with tunability for different applications; 2) Novel design and understanding of the assembly and fabrication technologies for multi-component and hierarchical nanostructures; and 3) Theoretical, computational, and machine learning study of the material design, growth behavior, and property prediction in 0D to 2D materials.
Focused topics include, but are not limited to, nanostructures in energy applications, 2D materials, polymer derived ceramic nanostructures, biological and biomedical nanomaterials, high-entropy ceramic nanomaterials, etc.

Abstracts Due 05/01/2025
IF YOU WOULD LIKE TO SUBMIT AN ABSTRACT . . .
. . . you are welcome to do so. Just click on the button. Note: To submit an abstract, you must be registered and logged into the system.


Questions about ProgramMaster? Contact programming@programmaster.org