ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Novel Strategies for Rapid Acquisition and Processing of Large Datasets from Advanced Characterization Techniques
Sponsorship TMS Materials Processing and Manufacturing Division
TMS: Advanced Characterization, Testing, and Simulation Committee
Organizer(s) Sriram Vijayan, Michigan Technological University
Rakesh R. Kamath, Argonne National Laboratory
Austin Mcdannald, National Institute of Standards and Technology
Fan Zhang, National Institute of Standards and Technology
Sarshad Rommel, University of Connecticut
Scope Quantification and correlation of microstructural data to material properties and process variables are key to the design of novel materials and optimization of advanced manufacturing processes. The investigation of the evolution of microstructural features (size, morphology, and chemistry) across different length and time scales in novel material systems and materials subject to advanced manufacturing processes demand the need for a thorough multiscale characterization approach, and typically results in large datasets. Recent developments in high-throughput and autonomous experimental approaches combined with advances in instrumentation, computational capabilities and analysis software have compounded the challenge of curating these large datasets. There is an imminent need for development of novel approaches/strategies to extract high quality and actionable microstructural information from these datasets in a rapid and efficient manner. This symposium seeks to bring researchers from industry and academia alike interested in discussing these novel strategies on data obtained from a single or a combination of techniques, which include - optical microscopy (OM), scanning electron microscopy (SEM), scanning/transmission electron microscopy (S/TEM), neutron and synchrotron x-ray-based techniques, atom probe tomography (APT), and x-ray micro-computed tomography (XCT).


Topics include, but are not limited to -
• High-throughput property or microstructural characterization methodologies that enable rapid discovery and/or improved design of novel material systems.
• Machine learning and AI guided real-time or post facto reduction of high-volume datasets acquired during in situ characterization studies of microstructure evolution.
• Challenges and opportunities related to curation, handling, access and storage of metadata/data from large characterization datasets and the adherence to FAIR data principles.
• Acceleration of feature extraction and quantification from large imaging (OIM, SEM, EBSD, S/TEM, radiography, tomography) spectroscopy and/or diffraction-based datasets through computer vision and/or machine learning workflows/packages.
• Workflows for on-the-fly data extraction and feedback for advanced manufacturing routes using in situ monitoring techniques.

Abstracts Due 07/15/2024
Proceedings Plan Planned:
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

A Retrieval-Augmented Generation Application in the Dental Composites Space
Accelerated Discovery of nanostructured High-Entropy Alloys With Superior Thermal Stability
Advanced Computational and Data Management Approaches at the Advanced Photon Source
AI-Driven Kikuchi Pattern Enhancement for Efficient and Robust EBSD Analysis of Highly Deformed Metals
AI-Driven Microstructural Data Correlation Using In-Situ Raman Spectroscopy in Self-Driving Lab by Using Chocolate As Frugal Twin
Application of the polyhedral template matching method for characterization of 2D atomic resolution electron microscopy images
Automated Real-Time 3D Stereo-Reconstructions Through Machine-Learning based Tracking
Challenges and Opportunities for Rapid EXAFS Analysis of Short-Range Order in HEAs
Characterization within an Automated Lab for Solid State Synthesis - Challenges and Solutions for Data Handling and Interpretation
Comparing Performance of U-Net Based Neural Networks for Automated Detection of Defects in TEM Images of Nuclear Materials
Correlative Microscopy and AI for Rapid Analysis of Complex Material Structures
Data Infrastructure - ‘The Missing Middle’
Deep Learning-Assisted Study of 3D Damage Evolution in Semiconductor Packages under Thermal Cycling Using X-ray Microcomputed Tomography
Deep Learning Conditional Diffusion models to recreate Scanning Electron Microscopy using Light Optical Microscopy Priors
Directing Flow: Pipelines for 3D Data
Efficient SEM Imaging Strategies for Microstructure Analysis in Metal Additive Manufacturing
Enhanced quantification of reinforcement particles in additively manufactured IN718 using microfocus X-ray computed tomography and CGAL Alpha Wrapping tool
From chaos to clarity: Managing the materials data surge
High-Throughput Quantitative Texture Imaging Using Wide-Field Laser Polarized-Light Microscope
High-throughput synthesis and rapid characterization of Cu-Ti alloys
High-Throughput Uniaxial Tensile/Compressive Testing in Additive Manufacturing Using Reference Material Load Cell Method
High throughput characterization of 316L stainless steel fabricated using laser powder bed fusion
Interrogating 3D Grain Morphology and Crystallographic Texture via Automated Polarized Light Microscopy
Optimization of Automated Sample Polishing Enabled by the Characterization of Surface Roughness Evolution
Optimizing Nanoindentation Methods for the High Throughput Study of Combinatorial Thin Film Libraries
Overview of Machine Learning in Low-Latency Automated Data Analysis for In-Situ Synchrotron X-ray Diffraction in Metals and Alloys
Rapid data-driven non-destructive inspection of additively manufactured IN718 using the side-band peak counting (SPC) non-linear ultrasonics method
Rapid synthesis, characterization and mechanical testing of novel printable alloys via functional grading in additive manufacturing
Real time Pole figures from polycrystalline samples during far field HEDM
Strategies for accelerated collection, and data curation of multi-modal serial-sectioning experiments.
Three-dimensional Laue-diffraction microscopy with a coded aperture: principles and high-performance-computing workflow
Towards Accelerated Material Characterization: Uncertainty Quantification in Elemental Analysis
“Microstructure Informatics”: Automated microstructure characterization and neural network based modeling of processing-structure-property relations.


Questions about ProgramMaster? Contact programming@programmaster.org