ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Additive Manufacturing Materials in Energy Environments II
Sponsorship TMS Materials Processing and Manufacturing Division
TMS: Additive Manufacturing Committee
TMS: Nuclear Materials Committee
Organizer(s) Isabella J. Van Rooyen, Pacific Northwest National Laboratory
Subhashish Meher, Pacific Northwest National Laboratory
Kumar Sridharan, University of Wisconsin-Madison
Xiaoyuan Lou, Purdue University
Yi Xie, Peking University
Michael Kirka, Oak Ridge National Laboratory
Mohan Sai Kiran Kumar Yadav Nartu, Pacific Northwest National Laboratory
Scope Additive manufacturing (AM) applications in energy applications have grown significantly over recent years due to the recognized advantages and benefits for supply chain development, economic and performance enhancements. However, the full adoption of AM in all energy sectors are hindered by the lack of available codes and standards, as well as a limited understanding of material performance in a specific energy environment. To overcome these challenges, it is essential to gather relevant material data, develop new materials, and advance qualification, inspection, and testing technologies. These efforts are necessary to meet the higher demands of materials in energy environments and enable their wide use in various applications.

This symposium invites talks focusing on understanding, developing, and qualifying AM materials that target the environments in specific energy sectors, including solar, wind, nuclear, oil and gas, natural gas, coal, and space applications. The symposium aims to share material data and introduce advanced materials and methods to accelerate the qualification and adoption of AM in different energy sectors. This symposium will integrate invited and contributed talks in the following three categories:

• Material Behavior and Characterization: characterizing the properties and behaviors of AM materials in the energy environments (e.g., mechanical properties, mechanical failures, corrosion), discovering new AM materials for improved properties and behaviors, and applying advanced characterization techniques in simulated and in-situ environments.
• Qualification and Testing: understanding the effects of AM process on material properties, evaluating long-term performance of AM materials in the energy environments through accelerated testing, modeling, and simulation.
• Performance Monitoring and Quality Control: Monitoring the performance of AM materials in the energy environments, establishing model-based qualifications and quality acceptance protocols.

Abstracts Due 07/15/2024
Proceedings Plan Planned:
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

A Convergent Approach to Fabricating 316L Stainless Steel (SS316L) Component for Nuclear Applications Using Additive Manufacturing (AM) and Hot Isostatic Pressing (HIP)
Accelerating the Evaluation of Creep Properties in Laser Powder Bed Fusion Processed Haynes 230 and Inconel 738
Additive Manufacturing of Oxide Dispersion Strengthened Steel
An Additively Manufactured IN718 Strengthened by CSL Boundaries with High-Temperature Tensile and Short-Term Creep Resistance up to 800°C
An Experimental Qualification Pipeline for the LPBF Fabrication of Complex Thermo-Fluidic Components for High-Temperature and High-Pressure Heat Exchange Applications
Characterization of Novel Friction Stir Layer Processed Al10Cr12Fe35Mn23Ni20 High Entropy Alloy for Nuclear Applications
Combining X-Ray Computed Tomography and Microstructure Characterization to Elucidate the Creep Behavior of LPBF 282 Alloy
Composite Material Development by Using Additive Manufacturing Technology to Improve the Performance of Nuclear Materials
Creating Processing-Microstructure-Properties Libraries for Additive Manufacturing of Complex Concentrated Alloys
Development and Additive Manufacturing of Oxide Dispersion Strengthened Inconel 625 for Gen. IV Nuclear Reactors
Effect of Hydrogen Blended Natural Gas on Additive Manufactured 316L Stainless Steel in Pressure Regulator Environments
Fabrication of Nanostructured Alumina Forming Austenitic Alloys via Conventional and Advanced Manufacturing Approaches
G-53: Characterization of Aerosol Jet Printed Polyimide/h-BN Nanocomposite Thin Films for Space Applications
G-54: Cold Spray Coating to Mitigate Chlorine-Induced Stress Corrosion Cracking (CISCC) of Stainless Steel Dry Cask Storage System for Spent Nuclear Fuel
G-55: Functionally Graded Joints Between Ferritic SA508 Low Alloy Steel to Austenitic 316L Stainless Steel Via Laser Directed Energy Deposition
G-56: Investigation of Scan Speed Effects on Recrystallization of LPBF Processed 316H Stainless Steel.
G-57: ODS Steels Produced by Laser Powder Bed Fusion for Fusion Power Systems
Heterogeneity in Stainless Steel 316 Fabricated Using Laser Powder Bed Fusion
High Performance Computing-Enabled Laser Powder Bed Fusion (L-PBF) Manufacturing of High Gamma Prime Alloy
Investigation on the Processing Parameter Effects on Microstructural Evolution of YTiO- Reinforced SS 316L Nanocomposites Via Wire-Powder Fed Directed Energy Deposition
Microstructural Evolution of Additively-Manufactured 316H Stainless Steel During High-Temperature Creep and Its Effects on Irradiation Resistance
Microstructure Control of Ferritic-Martensitic Steels During Wire-Arc Direct Energy Deposition Process
Microstructure Evolution and Mechanical Behavior of an Additively Manufactured High Strength Austenitic Stainless Steel
New Additive Manufacturing Route for Thermoelectric Materials Shaping and the Impact of the Geometry on the Conversion Energy: The Case of Silicides Compounds
Nitride and Oxide Dispersion Strengthened of Fe12Cr6Al Alloys During Laser Powder Bed Fusion for Nuclear Applications
Post Irradiation Examination of Neutron-Irradiated AM 316L Stainless Steel
The Effects of Process Parameters and Heat Treatment on the High-Temperature Creep Properties of Additively Manufactured 316H Stainless Steel
Time Dependence of 600°C Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Austenitic Stainless Steel Claddings on Low Carbon Steel Via Laser-Wire Directed Energy Deposition


Questions about ProgramMaster? Contact programming@programmaster.org