ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting MS&T24: Materials Science & Technology
Symposium Additive Manufacturing of Titanium-based Materials: Processing, Microstructure and Material Properties
Sponsorship TMS: Additive Manufacturing Committee
Organizer(s) Ulf R. Ackelid, Freemelt AB
Ola L. Harrysson, North Carolina State University
Scope Additive Manufacturing (AM) involves unique processing conditions, producing microstructure and material properties that differ from those produced by conventional methods. More research is still needed to fully understand the capabilities of AM and the correlation between process conditions, process parameters, microstructure and other material properties.

Titanium-based alloys are attractive for industrial use thanks to excellent properties in terms of specific strength, biocompatibility, and corrosion resistance. Titanium alloys are also expensive and challenging to machine. Thus it is not surprising that titanium attracts a strong interest within the AM community. The purpose of this symposium is to discuss AM processes and AM materials having titanium as the main constituent, with focus on the correlation between processing conditions and microstructure/material performance, in a broad perspective. We welcome contributions on all types of titanium-based materials: Unalloyed, alloys, intermetallics, composites, etc. We also welcome contributions on new innovative titanium alloy compositions tailored for additive manufacturing.

Abstracts Due 05/15/2024
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

A Novel Direct Reduction and Alloying (DRA) Process for Making Titanium and Titanium Alloy Powder
Additive Manufacturing of Titanium Loop Heat Pipe for Thermal Management of Spaceflight
Atomic Layer Deposition (ALD) for Improved Ti64 Feedstocks for Laser Powder Bed Fusion Processes
Direct Energy Deposition Processability of Ti-Nb-Fe Alloy Using In-Situ Alloying and Premixed Powder
Effect of Heat Treatment on Laser Powder Bed Fusion Ti-6Al-4V
Effect of Nitrogen Environment In-Situ Laser Remelting Over the Corrosion and Wear Behaviour of Additive Manufactured Ti6Al4V
Effect of Recycled Swarf and Spherical Ti-6Al-4V Feedstocks on Laser Directed Energy Deposition Additive Manufacturing
Effects of Thermal Conditions and Post-Processing Heat Treatments on Microstructure-Property Relationships of Ti-6Al-4V Fabricated via Laser Powder Bed Fusion
Influence of Building Direction on Microstructure Evolution and Mechanical Behaviour of Additive Manufactured Ti-6Al-4V alloy
Machine Learning Enabled Discovery of New L-PBF Processing Domains for Ti-6Al-4V
Nanostructures in the Direct Energy Deposited Ti-5Al-5Mo-5V-3Cr Alloy
Refining the Fatigue-Based Process Window for LPBF Ti64 and Exploring Defect Distributions
Revealing Solidification Conditions during Laser Powder Bed Fusion of Ti-6Al-4V from EBSD
Tailoring the Microstructural Phases of an Additively Manufactured Near β Ti Alloy for an Enhanced Mechanical and Corrosion Response
Ti-6Al-4V Microstructure Outcomes and Effects in PBF-LB Fatigue Samples Across Varied Laser Power and Velocity
Variations Across Length Scales in Additively Manufactured Ti-6Al-4V Parts: Challenges to Repeatability and Reproducibility


Questions about ProgramMaster? Contact programming@programmaster.org