ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Advanced Characterization Techniques for Quantifying and Modeling Deformation
Sponsorship TMS Structural Materials Division
TMS Extraction and Processing Division
TMS: Advanced Characterization, Testing, and Simulation Committee
TMS: Materials Characterization Committee
Organizer(s) Wolfgang Pantleon, Technical University of Denmark
Irene J. Beyerlein, University of California, Santa Barbara
C. Cem Tasan, Massachusetts Institute of Technology
M. Arul Kumar, Indian Institute of Technology Kanpur
Scope Advances in characterization technology have greatly improved our ability to quantify deformation mechanisms such as dislocation motion, twinning, and stress-induced phase transformations, and the microstructural changes accompanying deformation such as texture evolution, grain morphology changes, dislocation accumulation and localized strain. A variety of relatively new techniques are being applied to both structural and functional materials. In combination with modeling, these techniques improve our understanding of deformation and failure during material processing/forming and under normal or extreme conditions in service. In situ techniques, especially, are providing an enhanced understanding of individual mechanisms, their interactions, and the direct validation of simulations from computational materials science models. This gathering offers a venue to discuss and share new advances in current techniques or new technique development or in pairing with algorithms or simulations as they apply to deformation behavior.

Areas of interest include, but are not limited to:
* Improving the understanding of deformation mechanisms in structural or functional materials – elasticity, dislocation plasticity, mechanically-induced twinning or phase transformations, damage and fracture
* Advances in characterization techniques: X-ray-based techniques, electron-based techniques (including HR-(S)TEM, EBSD, HR-EBSD, ECCI, PED), scanning probe microscopy techniques, and others – in particular in-situ
* Advances in materials deformation modeling– with specific emphasis on the integration with advanced characterization techniques

Abstracts Due 07/15/2024
Proceedings Plan Undecided
No additional information can be displayed at this time.

Questions about ProgramMaster? Contact