Conference Logo ProgramMaster Logo
Conference Tools for MS&T26: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Symposium

Meeting MS&T26: Materials Science & Technology
Symposium Fracture of Steels: New Approaches to Modeling and Experimental Characterization
Sponsorship AIST Metallurgy—Processing, Products and Applications Technology Committee
Organizer(s) Olujide Oyerinde, Clarkson University
AFM Monowar Hossain, Big River Steel
Ashwin Kannan Iyengar, AM/NS Calvert LLC
Scope This symposium focuses on new multi-length scale experimental and computational techniques for characterizing as well as predicting fracture and crack growth in sheet steels under various deformation modes, strain paths, temperatures, and strain rates. Of particular interest are techniques that identify and then connect relevant multi-length scale fracture phenomena to the continuum. From the computational side, particular interest is in techniques that accurately predict damage accumulation, incipient fracture, and subsequent crack growth in fundamental mechanical tests, forming (e.g. stamping), and formed component performance with experimental validation. Quantitative connections between martensitic transformation and fracture as well as new approaches to modeling steel microstructures at the representative volume element (RVE) level are needed. To provide a means for model validation and for future fracture-resistant steel development, advanced experimental methods are desired. These may include high energy beam methods (neutron, synchrotron) for measuring damage accumulation leading to fracture, electron microscopy methods such as electron backscatter diffraction (EBSD), atom probe tomography (APT), high-resolution transmission electron microscopy (HRTEM), and approaches to coupling strain field measurement (e.g. digital image correlation (DIC)) with temperature measurements as a function of strain rate. Techniques for improving existing approaches to calibration of phenomenological fracture models, such as GISSMO, that reduce the amount of experiments needed are also welcome. Also, microstructure-based methods that limit mechanical testing required for calibrating phenomenological fracture models are needed.
Abstracts Due 05/01/2026

PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

No additional information can be displayed at this time.


Questions about ProgramMaster? Contact programming@programmaster.org