Conference Logo ProgramMaster Logo
Conference Tools for MS&T25: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Symposium

Meeting MS&T25: Materials Science & Technology
Symposium Thermodynamics of Materials in Extreme Environments
Sponsorship ACerS Basic Science Division
ACerS Energy Materials and Systems Division
Organizer(s) Xiaofeng Guo, Washington State University
Kyle S. Brinkman, Clemson University
Alexandra Navrotsky, Arizona State University
Kristina Lilova, Arizona State University
Jake W. Amoroso, Savannah River National Laboratory
Xingbo Liu, West Virginia University
Gustavo Costa, NASA Glenn Research Center
Scope Thermodynamics controls synthesis, corrosion, degradation, environmental transport, and catalysis processes and forms the fundamental underpinnings of reactivity, transformation, and stability in materials. The developments in energy conversion and storage (including renewables, nuclear energy, and batteries, to name a few active areas) have resulted in increasing need for improved and new materials, including better ways to characterize and study their fundamental properties. The investigation of the thermodynamics of many materials which undergo secondary phase formation under operating conditions raise issues of lifetime and compatibility critical for their application. Extreme conditions such as elevated temperatures and pressures, high radiation fields, and corrosive environments are encountered in nuclear energy and aeronautical and space applications. Such conditions parallel those encountered in the deep Earth and in planetary interiors. Fundamental thermodynamic measurements and computational predictions are required to understand and model the synthesis and use and eventual disposition of energy materials. The proposed symposium will bring together a group of experimental and computational materials scientists focused on predicting and measuring thermodynamic properties of traditional and new materials to be used in extreme environments.
Abstracts Due 05/15/2025

PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE


Achieving accurate entropy and melting point by ab initio molecular dynamics and zentropy theory: Application to fluoride and chloride salts
Computational tools for high temperature materials properties
First-Principles Thermodynamic Assessments of Sr-Containing Secondary Phase Formation in La1-xSrxMnO3±δ Perovskites for Solid Oxide Cell Applications
Inferring Structure from Raman Spectroscopy and Connecting It to the Macroscopic Behavior of Molten ThCl4
Larnite Ca2SiO4: high-temperature mass spectrometric study of thermodynamic properties
Metal di-boride (MB2 | M = Ti, Zr, Nb, Hf, Ta) properties above 3000 ˚C
Multiscale Prediction of α-Precipitate Nucleation in β-Stabilized Alloys: CALPHAD-based Model
Nanoparticle-Reinforced Polymers for Blast Mitigation Technologies
Thermochemical Stability of Oxides in High-Temperature, High-Velocity Steam
Thermodynamic Stability of Hydrated Rare Earth Carbonates (Lanthanites)
Ultra-lightweight single-phase Al-based complex concentrated alloy with high specific strength


Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement