Conference Logo ProgramMaster Logo
Conference Tools for MS&T25: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Symposium

Meeting MS&T25: Materials Science & Technology
Symposium Materials Informatics for Images and Multi-Dimensional Datasets
Sponsorship ACerS Basic Science Division
ACerS Electronics Division
Organizer(s) Amanda Krause, Carnegie Mellon University
Daniel Ruscitto, GE Aerospace Research
Alp Sehirlioglu, Case Western Reserve University
Roger H. French, Case Western Reserve University
Erika I. Barcelos, Case Western Reserve University
Scope Big data techniques are being adopted in materials science to sort and analyze large volumes of disparate data for scientific discovery. This informatics approach is particularly attractive for analyzing micrographs, which traditionally rely on qualitative observations. This symposium focuses on analyzing images or multi-dimensional data with data methods, including computer visualization, advanced analytics, machine learning, and digital image correlation, to identify physical descriptors and higher order relationships. A special emphasis will be on applying these techniques to improve our understanding of structure-property relationships.

Session topics include:
-Data mining and machine learning applied to atomic/mesoscale images and spectroscopic data to identify defects
-Informing processing methods like additive manufacturing
-Transfer learning from experimental data to models
-Correlating mechanical, electrical, and thermal properties with microstructure

Abstracts Due 05/15/2025

PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE


Application of a Linear Homography Based approach for absolute residual strain extraction from Electron Backscatter Diffraction Patterns
Bidirectional Prediction of Microstructure–Property/Process Relationships in Advanced Structural Materials Using Deep Generative Models
Graph-based materials informatics for Fe-based alloy modeling and design
Harnessing of photodiode signals to predict mechanical properties in laser powder bed fusion additive manufacturing
High Throughput Instrumented Indentation Techniques to Extract Bulk-like Properties of Commercial Metal Alloys
Mapping Microstructure: Manifold Construction and Exploitation for Accelerated Materials Discovery
Microstructure representation with foundational vision models for efficient learning of microstructure--property relationships
Nanocrystalline Films: Imaging, Orientation Mapping, Machine Learning and Data Analytics
Non-destructive 3D characterization of structural failures using X-ray computed tomography
Parametrization of Phases, Symmetries and Defects Through Local Crystallography
Smart E-Waste Sorting: Confidence-Aware Rare Earth and Hazardous Material Mapping via Hyperspectral Imaging
3D data pipelines and workflows to mesh experimental and computational results


Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement