Scope |
Current and future generation nuclear reactors require improved structural materials that improve efficiency during in-service conditions, allow for long reactor lifetimes, and increase safety during accidents. Given the increasingly large number of reactor design being considered (e.g. fusion, molten salt, LWRs, etc.), a series of distinct material concepts have been proposed to address these needs. Effects of reactor environments on mechanical behavior will be a key component to predicting strength and performance of materials in the aforementioned circumstances.
This symposium aims to take a closer look at the mechanical behavior of reactor components across length scales. With recent advancements and increased use of in-situ techniques, more is known about irradiation effects on strength than ever before. Simultaneously, ex-situ techniques are critical to probe component-sized parts, and validate the use of a material for inclusion within a reactor. Furthermore, synergy with materials modeling is advancing the prediction of material performance under normal and accident conditions, as well as reactor lifetimes.
Topics of interest include, but are not limited to:
• Mechanical behavior testing, including tension, compression, bend, bulge, creep, fatigue, and fracture
• Effects of environment on strength, including dose, dose rate, temperature, and corrosion
• Hardness testing, including nanohardness and microhardness
• Development of microstructure sensitive material strength models
• Modeling and simulation of irradiation defect interactions during mechanical testing
• Macroscopic component modeling for full scale performance
• In-situ mechanical testing, including micromechanical and nanomechanical compression and tension
• Novel techniques to probe material strength under reactor conditions |