Conference Logo ProgramMaster Logo
Conference Tools for 2026 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting 2026 TMS Annual Meeting & Exhibition
Symposium Hume-Rothery Symposium: Interface Structure and Properties: Impact on Microstructure Evolution
Presentation Title Atomistic insights into the limits of metal plasticity and metal hardening.
Author(s) Luis Zepeda-Ruiz
On-Site Speaker (Planned) Luis Zepeda-Ruiz
Abstract Scope The strength and plasticity properties of metals are defined by the presence and motion of dislocations. Understanding how they interact when the metal is mechanically deformed is essential to designing and optimizing metallic systems for many applications. Here I present fully dynamic atomistic simulations on sufficiently large samples that are statistically representative of macroscopic crystal plasticity behavior in body- and face-centered-cubic metals. The simulations are fully resolved and accurately capture every possible mechanism of material response, showing every “jiggle and wiggle” of atomic motion. This presentation will focus on the response of the metal when the limits of dislocation-mediated plasticity are exceeded, the state of plastic flow below this limit in which the flow stress and dislocation density remain constant as long as the conditions of straining thereafter remain unchanged, and on the origins of metal hardening at its most fundamental level of atomic motion.
Proceedings Inclusion? Planned:
Keywords Computational Materials Science & Engineering, Modeling and Simulation, Mechanical Properties

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Metric on Grain Boundary Networks
A unified variational model for grain boundary dynamics incorporating microscopic structure
Artificial intelligence and data-driven design of advanced materials
Atomistic insights into the limits of metal plasticity and metal hardening.
Atomistic Modeling of the radiation resistance of Interfaces in Zr-Nb Metallic Multilayers
Bringing Metallurgy to the 21st Century: Multiscale Microstructural and Mechanical Characterization of Additively Manufactured Metallic Alloys
Comparison of observed grain boundary migration to capillary driving forces
Critical assessment of grain boundaries in hydrogen trapping and diffusion in metals
David Srolovitz and metallic glasses
Direct Observation of Grain Rotation Driven by Shear-Coupled Grain Boundary Migration
Energetic Pathways to Twin Networks and Amorphous Phases in Ni Superalloy and High-Entropy Alloy Thin Films
Hume-Rothery and Atomic Misfits
Impact of interface faceting on microstructure evolution: The tractable example of ice templating
Integrated Phase Field Modeling for Microstructure Evolution and Alloy Performance Designed
Microstructural Evolution Studies with the Potts Model
Microstructure Evolution in Thin Films: Solid-State Dewetting Scenarios and Tailoring Self-Assembly
Microstructure of Ultraelastic Chemically Complex Alloys from Machine Learning – assisted Atomistic Simulations
Multi-Scale Simulations of Deformation and Failure Behaviours in Polycrystalline Multi-Principal Element Alloys
Predicting Plastic Slip Transfer across Interfaces in Crystals: A Scale-Bridging Mechanistic Approach
Reinforcement Learning-Guided Long-Timescale Atomistic Simulations
Revisiting Grain Growth: The Impact of Internal Stress on Grain Boundary Migration
Room-temperature recrystallization of molybdenum induced by nanoindentation
Segregation in Binary Cubic Oxides, and CVD of Diamond Films: A Tale of Two Disparate Dissertation Topics
Solute-drag forces from short-time equilibrium fluctuations of crystalline interfaces
Stochasticity in Nucleation-Controlled Plasticity – Insights from Modeling and Simulation
Structural phase transformations in transition metal dichalcogenide monolayers: bend, shuffle, and slip
The atomic structure of real grain boundaries
The origin of grain boundary phase behavior in elemental metals
The Role of Interfaces in Hydrogen-Based Reduction of Metal Oxides
The seemingly endless quest for continuum descriptions of grain boundaries
Thermodynamics of defect phases and fully stabilized polycrystalline materials
Triple Junctions in Materials Thermodynamics
William Hume-Rothery Award Lecture: The Mechanistic Links Between Grain Boundary Structure and Microstructure Evolution

Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement