Conference Logo ProgramMaster Logo
Conference Tools for 2026 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting 2026 TMS Annual Meeting & Exhibition
Symposium Materials Kinetics and Mechanisms Under External Forcing-Driven Conditions
Presentation Title Modeling the Impact of Radiation Damage on Laser Diode Performance
Author(s) Stephen Fluckey, Henry Little, Sijay Huang, Yu Leng, Christopher Singh, Xiang-Yang (Ben) Liu, Christopher Matthews, Blas P. Uberuaga
On-Site Speaker (Planned) Blas P. Uberuaga
Abstract Scope The development of radiation-hard optoelectronic devices begins with a fundamental understanding of how radiation-induced defects impact device performance. To that end, we have developed a multiscale model that uses defect thermokinetic data to parameterize a cluster dynamics model of damage, accounting for the local electronic structure of the material. The results of these simulations inform a device level model of a laser diode to assess the impact of those defects on the performance of the device. This model accounts for the confinement of the electromagnetic waves and the non-radiative recombination pathways introduced by the defects. With this model, we can ascertain the impact of individual defects on performance, suggesting a path to designing devices that are more resilient to irradiation.
Proceedings Inclusion? Planned:
Keywords Electronic Materials, Modeling and Simulation, Other

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Abnormal Grain Growth under Cyclic Loading
Additive Friction Stir Deposition: A Rich Source of Peculiar Kinetic Phenomena Driven by External Forcing
Atomistic Insights into Configurational Evolution and Mobility of Dumbbell Interstitials in Fe-Cr Alloys
Elucidating the three-dimensional radiation-induced segregation morphology at grain boundaries in proton-irradiated 316L stainless steel
Energy-Resilient Materials: Stabilized Nanocrystalline Metals for Extreme Environments
Exploring Metastability Wells: Phase Evolution and Functional Design via Solid-State Processing
Extending the concept of defect-phase to driven systems: Opportunities and Challenges
Grain Boundary Structural Transformations Under Extremes
Graph-based analysis of dislocation glide kinetics in random alloys
In Situ Experiments and Atomistic Modeling of Grain Boundary Deformation
Ion Irradiation Effects on Surface Oxidation and Microstructure in Fe-8Cr Epitaxial Films: A Correlative TEM and APT Study
Irradiation-driven high pressure-like defect structure evolution in ceramics.
Mechano-Chemical Effect in Mechanically Driven Complex Concentrated Alloys
Mesoscale models of fluctuations-governed microstructural evolution in alloys: from nucleation and growth to irradiation damage
Microstructural Evolution During Intense Shear Deformation Processing
Modeling the Impact of Radiation Damage on Laser Diode Performance
Morphological Transformations of Radiation-Induced Precipitates at Grain Boundaries
Non-equilibrium Thermodynamics of Dislocations at Large Deformation as a Model Driven System
Nonequilibrium chemical short-range order in externally-driven alloys
Radiation Resistance and Microstructural Evolution of Nanocrystalline Fe-Ti and Fe-Ta Systems Under Ion Irradiation
Reshock Behavior of Aluminum-1100 Alloy
Severe Plastic Strain-Driven Phase Transformations and Microstructure Evolution under High Pressure: New Rules
Shear-Driven Atomic Transport and Compositional Patterning in Additive Friction Stir Deposition of Immiscible Binary Systems
SolidStir® material processing: Is it a viable tool for kinetics-driven far-from- equilibrium alloy development?
Supersonic Microparticle Impact-Induced Interfacial Mixing
Zentropy for Non-equilibrium Thermodynamics

Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement