Conference Logo ProgramMaster Logo
Conference Tools for MS&T25: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting MS&T25: Materials Science & Technology
Symposium Additive Manufacturing of Ceramic-Based Materials: Process Development, Materials, Process Optimization and Applications
Presentation Title Metal Elements Doped Negative Poisson's Ratio Based Structural SiOC Polymer-Derived Ceramic to Activate Efficient Pressure and High-Temperature Difunctional Detection Performance
Author(s) Taotao Hu, Feibin Wei
On-Site Speaker (Planned) Taotao Hu
Abstract Scope To enhance the semiconductor properties of polymer-derived ceramic SiOC and gain high-performance pressure-temperature dual sensing capabilities, Al and Ni were doped to the precursor solution through polymerization reactions. The customized re-entrant and tetrachiral honeycomb negative Poisson's ratio structures fabricated via digital light processing printing technology lay the foundation of mechanical properties and piezoresistivity for SiOC. The addition of Al and Ni facilitates the phase transition from SiOC to SiO2, SiC, and C, thus increasing the content of conductive phases and the conductivity achieves 1.05 and 0.27 S/m. Meanwhile, the energy band arrangement is adjusted to favorable for charge transfer. The obtained maximum piezoresistivity is 75.44% (SiAlOC) and 78.31% (SiNiOC), and its performance hardly changed after 300 times and 500 times cycling tests. Additionally, both SiOC and modified ceramic exhibit negative temperature coefficient characteristics, SiOC is appropriate for the Steinhart-Hart equation while SiAlOC (SiNiOC) is more suitable for the thermistor equation.
Keywords Composites,

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Additive Manufacturing of Oxide and Non-Oxide Ceramics for Functional and Structural Applications
Advanced Manufacturing and Densification Techniques for Fabricating Ceramic Matrix Composites
Atomic Layer Deposition (ALD) for Nanoscale SiC AM Feedstock Improvement
Colloidal Material Design for Additively Manufacturing Optical Glasses
Development of Aluminium Coating via DC Pulse Electrophoretic Deposition on Inconel 625 Particles for High-Temperature Applications
Development of Direct Ink Write Radially Graded Alumina/Zirconia
Development of Models for Densification and Microstructural Evolution of Ceramic Green Bodies Produced by Direct Ink Writing
Effect of Bimodal Powder on the Densification of a Green Body via Binder Jetting
Effect of Dispersants on the Direct Ink Write Printability of SiC Powder in Phenolic Resin for Sintered SiC
Engineering the Physicochemical Characteristics of Additively Manufactured Ceramics
Expanding Laser Powder Bed Fusion to Functional Ceramics: Bulk Mo₂C Cathodes for Catalysis
Extrusion Manufacturing (Direct Ink Write) of Carbon-Loaded Ultra-High Temperature Ceramic Matrix Composites
Functional Defects in Advanced Ceramics Fabricated by Selective Laser Sintering
Influence of Compositional and Structural Design on the Quasi-Static and Dynamic Performance of Additively Manufactured Silica-Based Ceramics
Metal Elements Doped Negative Poisson's Ratio Based Structural SiOC Polymer-Derived Ceramic to Activate Efficient Pressure and High-Temperature Difunctional Detection Performance
Multi-Material Direct Ink Writing for Ceramic Nuclear Fuel Applications
Multiphysics Modeling of Volumetric Additive Manufacturing with Microwave Beamforming for Ceramic 3D Printing
Photonic Curing of Chemically Bonded Phosphate Ceramics (CBPC) via Flash Lamp Annealing and the Effect of Optical Absorbers on the Reaction Kinetics and Microstructure
Plasma Jet Oxidation of Additively Manufactured Monolithic and High Entropy Ultra High Temperature Ceramic Carbides
Powder Behavior Simulation for Ceramic Additive Manufacturing: Enhancing Process Understanding and Material Performance
Promoting Melting and Solidification of Aluminum Nitride Through Laser Powder Bed Fusion
Tailoring Material Properties of 3D Printed Alumina Through DLP Printing and Firing Parameters
Three-Dimensional Printing of Hierarchically Porous Ceramics for Multifunctional Applications
Towards Microwave Volumetric Additive Manufacturing for Ceramics: Beamforming Experiments
Understanding Slurry Degradation in Digital Light Processing of High Refractive Index Ceramics
Versatile Ceramic Slurry Formulations for Photopolymerization-Based Additive Manufacturing
Viscosity Adjustment Without Binder

Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement