Conference Logo ProgramMaster Logo
Conference Tools for 2026 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting 2026 TMS Annual Meeting & Exhibition
Symposium Bridging Scales: Deformation and Damage Mechanisms in Microstructurally and Compositionally Complex Metallic Alloys
Presentation Title Physics Informed Machine Learning for Rapid Defect Characterization of Crystalline Materials
Author(s) Kamal Wagle, Alexander Scheinker, Reeju Pokharel
On-Site Speaker (Planned) Kamal Wagle
Abstract Scope Iterative phase retrieval in Bragg Coherent Diffraction Imaging (BCDI) is computationally expensive. This work aims to generate physically realistic training data for BCDI using two complementary approaches to create diverse defect structures typical of plastic deformation in metallic systems. First, molecular dynamics (MD) simulations under varied loading conditions (e.g., tension, compression, shock) naturally induce a wide range of defects. Second, specific defects such as edge and screw dislocations, stacking faults, and twin boundaries are systematically introduced into single crystals, followed by MD relaxation to obtain energetically favorable configurations. Simulated diffraction patterns from these relaxed crystals are paired with their structures to train machine learning (ML) models. This scalable approach enables rapid, one-shot reconstruction of defected crystals from experimental diffraction data, bypassing slow, iterative phase retrieval. The methodology also supports future extensions to reconstruct polycrystalline materials and complex alloys, with relevance to mechanical properties, defect-mediated phase transformations, and structure-property relationships.
Proceedings Inclusion? Planned:
Keywords Machine Learning, Mechanical Properties, Phase Transformations

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Compositionally Dependent Crystal Plasticity and Strength Model for High-Temperature Refractory Alloys
Bridging Atomistic and Mesoscale Models for Predicting Materials Response Under Radiation
Ductility mechanisms in complex concentrated refractory alloys from atomistic fracture simulations
Effect of heat treatment on the microstructure an irradiation response of MoNbTi based refractory MPEAs
Effect of void clustering and stress triaxiality on the ductile fracture of a high-entropy alloy
Enhanced Strength-Ductility in Ti-6Al-4V via Multi-Step Laser Surface Processing
Improved Low-Cycle Fatigue Resistance and Competing Deformation Mechanisms of Chemically Optimized FCC Multi-Principal Element Alloys
Kink Dynamics and Cross-Kink Effects in Screw Dislocation Migration of Refractory Complex Concentrated Alloys
Leveraging the strain glass microstructure in fcc chemically complex alloys
Mechanisms of Transformation and Recovery in TRIP-metastable High-Entropy Alloys revealed by in-situ heating and straining
Microstructural Stability of Re and Ru Modified A2 + B2 Refractory High Entropy Alloys
MICROSTRUCTURALLY DEFECT INDUCED HIGH STRAIN-RATE FAILURE MODES IN REFRACTORY ALLOYS
Multi-Scale Investigation of Strain Localization in Hot-Rolled Superelastic Nitinol
Multiscale insights into plastic deformation in phase-segregated ternary CCAs
On the Toughening Deformation Mechanisms in a NbTaTiHf Refractory HEA at Cryogenic and Room Temperatures
Physics Informed Machine Learning for Rapid Defect Characterization of Crystalline Materials
Predicting Failure in Metal Matrix Composites Using a Coupled Phase-Field and Crystal Plasticity Model
Simultaneous improvement of strength and ductility in additively manufactured Al-7Si-0.3Mg-0.5Cu-1Fe alloy
Stabilization of ordered phases in a Al0.3CoFeNi High Entropy Alloy Leading to Excellent Tensile Properties: Entropy versus Enthalpy
STEM Analysis of Dislocation-Precipitate Interactions in BCC+B2 Fe75Al15Ni10 at Room and Elevated Temperatures
Tailoring the Mechanical Behavior of FeCoNiCuB High-Entropy Alloys Through Microalloying
Temperature-dependent Deformation Mechanisms in Single-crystalline RMPEAs
Tensile Ductility and Plastic Deformation Behavior of Polycrystalline Refractory Multi-Principal Element Alloys

Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement