ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Materials Informatics for Images and Multi-dimensional Datasets
Presentation Title Computer Vision and Machine Learning for Microstructural Image Data
Author(s) Elizabeth A. Holm
On-Site Speaker (Planned) Elizabeth A. Holm
Abstract Scope Microstructural images encode rich data sets that contain information about the structure, processing, and properties of the parent material. As such, they are amenable to characterization and analysis by data science approaches, including computer vision (CV) and machine learning (ML). In fact, they offer certain advantages compared to natural images, often requiring smaller training data sets and enabling more thorough assessment of results. Because CV and ML methods can be trained to reproduce human visual judgments, they can perform qualitative and quantitative characterization of complex microstructures, including segmentation, measurement, classification, and visual similarity tasks, in an objective, repeatable, and indefatigable manner. In addition, these approaches facilitate new characterization techniques that capitalize on the unique capabilities of computers to capture additional information compared to traditional metrics. Finally, ML can learn to associate microstructural features with materials processing or property metadata, providing physical insight into phenomena such as strength and failure.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Accelerate TEM and Tomography Imaging by Deep-learning Enabled Compressive Sensing and Information Inpainting in High-dimensional Manifold
Assessment of the Ability of Laboratory Accelerated Corrosion Tests to Accurately Predict On-road Corrosion of 6xxx Al Alloys
Automated Optical Microscopy for Rapid Defect Screening
Computer Vision and Machine Learning for Microstructural Image Data
Developing Granular Dielectrics Based on Reconstructed Micro-CT Images
FAIR Digital Object Framework and High Throughput Experiment
Feature Characterization of Electron Backscatter Patterns from Rotating Lattice Single Crystals Using Machine Learning
Identifying Crack Initiation Sites with CNNs
Incorporating Materials Physics into Imaging Algorithms for Microscope Image Interpretation
Introductory Comments: Materials Informatics for Images and Multi-dimensional Datasets
Keyhole Porosity Threshold in Laser Melting Revealed by High-Speed X-ray Imaging
Microstructure Representation for Physically Meaningful Descriptors
Neural Networks and Community Driven Software for Scanning Transmission Electron Microscopy
Towards Smart Categorization of Growth Morphology by Machine Learning

Questions about ProgramMaster? Contact programming@programmaster.org