Conference Logo ProgramMaster Logo
Conference Tools for 2026 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting 2026 TMS Annual Meeting & Exhibition
Symposium Novel Strategies for Rapid Acquisition and Processing of Large Datasets From Advanced Characterization Techniques
Presentation Title Emphasizing the Importance of Data Exchange in Constructing a Digital Twin for Metals-AM
Author(s) Anthony D. Rollett
On-Site Speaker (Planned) Anthony D. Rollett
Abstract Scope The computational digital twin (DT) being built by the Institute for Model-Based Qualification & Certification of Additive Manufacturing (IMQCAM) under NASA support comprises many component models. For the DT to fulfil its mission of predicting fatigue of metals AM parts, all these modules must be connected together into a seamless whole. Process space must be evaluated for all the key process variables, which means modeling microstructure at the grain scale (with texture), the phase scale (e.g., in Ti-6Al-4V), the defect (pore) scale and the precipitate scale, along with variations in compositions. For micromechanical modeling, the materials information must be upscaled to crack initiation, short crack growth, long crack growth, along with part geometry. Examples are given of workflows that connect these component models together along with discussion of data formats and uncertainty quantification. Data curation is straightforward compared to the technical and cultural challenges of data exchange.
Proceedings Inclusion? Planned:
Keywords Additive Manufacturing, Computational Materials Science & Engineering, ICME

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Topology Optimized Specimen that Provides the Yield Surface in a Single Test
Advancements in Titanium Microstructure Characterization: Integrating AI for Automated Complex Quantification
Advances in Analytical S/TEM-Based Workflows: Emerging Techniques for Smarter Data Acquisition and Processing
Advances in Instrumentation for Spatially Resolved Acoustic Spectroscopy (SRAS)
Advancing Segregation Characterization in Steel and Alloys: A Novel BEX-EDS-SEM Approach
Affine Transformations to Correlate Experimental and Simulated EDS Spectra for Multi-Element Systems
Automated 2D Microscopy Workflows for Multimodal Characterization of Structure, Crystallography and Composition
Comprehensive Microstructural Characterization of Aging-Treated Aluminum Alloy AA2024 Using Integrated SEM, STEM, EDS, and EBSD Workflows
Conditional Diffusion Models for Microscopy Modality Transfer of Electron Backscattering Microscopy Diffraction Misorientations Maps from Optical Microscopy
Discovering Hidden Fingerprints in Multimodal Process-Structure-Property Data via Joint Embedding
Emphasizing the Importance of Data Exchange in Constructing a Digital Twin for Metals-AM
Enabling Data Starved Microstructural Segmentation With Foundation Models as First-Pass Segmentors in Low-Contrast Al-Si Solidification
Examining Growth Twinning in Ni-Based Films via a High-Throughput Methodology
Frequency-Domain Thermoreflectance Automation for High Throughput Microstructural and Thermal Characterization
High-Throughput Crystallography by Quantitative Large-Area Polarized-Light Microscopy
High-Throughput Exploration of Large Material Design Spaces Using Small Samples and Bayesian Strategies
High-Throughput Processing and Accelerated Characterization of Cu–Ti Alloy
High-Throughput Time-Resolved X-Ray Computed Tomography to Characterize Flaw Evolution in LPBF Parts During Creep
High Throughput Texture Analysis of Quartz via Automated Polarized Reflective Light Microscopy
Increasing the Throughput of Ultra-High Temperature Ceramic Tensile Testing
Lightweight Services and Federated Storage for Data-Intensive Structural Materials Research
Linking Energetic Material Sensitivity and Microstructure Variability Across Length Scales
Machine Learning Assisted Structure-Property Relationships by Nanoindentation
Mapping Microstructure to Field Properties in Materials Under Dynamical Loading
Nanocrystalline Films: Imaging, Orientation Mapping, Machine Learning and Data Analytics
New Strategy of Surface Defect Detection in Metallic Coatings Using a Machine Learning-Based Model
Same-Day Product Quality Assessment of CaCl₂-Assisted Direct Reduction of Chromite via µCT and Deep-Learning Segmentation Against a Reference Dataset
Segmentation Methods for Tracking Dislocation Dynamics

Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement