Conference Logo ProgramMaster Logo
Conference Tools for 2026 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting 2026 TMS Annual Meeting & Exhibition
Symposium Novel Strategies for Rapid Acquisition and Processing of Large Datasets From Advanced Characterization Techniques
Presentation Title Affine Transformations to Correlate Experimental and Simulated EDS Spectra for Multi-Element Systems
Author(s) Malachi Nelson, James Zillinger, Luis Nunez, Boone Beausoleil
On-Site Speaker (Planned) Malachi Nelson
Abstract Scope Energy Dispersive X-ray Spectroscopy (EDS) is a popular technique for qualitative elemental analysis, but it is a challenge to produce more quantitative results. Proprietary software can provide “black box” estimates of elemental concentrations, but physics-based simulations provide higher fidelity analysis by considering the multitude of factors affecting the spectra. Quantitative fitting techniques are available, but these require intensive characterization and fitting methods which are difficult when performing high throughput analysis. This work provides an alternative method to correlate experimental and simulated EDS spectra by automating simulations to build a database of relevant features. Affine transformations are used to perform multivariable interpolation in Euclidean space to relate relevant features between experimental and simulated spectra, preserving properties such as the barycenter. Affine transformations are computationally efficient and implementing features beyond peak intensities using machine learning methods is discussed.
Proceedings Inclusion? Planned:
Keywords Characterization, Machine Learning, Nuclear Materials

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Topology Optimized Specimen that Provides the Yield Surface in a Single Test
Advancements in Titanium Microstructure Characterization: Integrating AI for Automated Complex Quantification
Advances in Analytical S/TEM-Based Workflows: Emerging Techniques for Smarter Data Acquisition and Processing
Advances in Instrumentation for Spatially Resolved Acoustic Spectroscopy (SRAS)
Advancing Segregation Characterization in Steel and Alloys: A Novel BEX-EDS-SEM Approach
Affine Transformations to Correlate Experimental and Simulated EDS Spectra for Multi-Element Systems
Automated 2D Microscopy Workflows for Multimodal Characterization of Structure, Crystallography and Composition
Comprehensive Microstructural Characterization of Aging-Treated Aluminum Alloy AA2024 Using Integrated SEM, STEM, EDS, and EBSD Workflows
Conditional Diffusion Models for Microscopy Modality Transfer of Electron Backscattering Microscopy Diffraction Misorientations Maps from Optical Microscopy
Discovering Hidden Fingerprints in Multimodal Process-Structure-Property Data via Joint Embedding
Emphasizing the Importance of Data Exchange in Constructing a Digital Twin for Metals-AM
Enabling Data Starved Microstructural Segmentation With Foundation Models as First-Pass Segmentors in Low-Contrast Al-Si Solidification
Examining Growth Twinning in Ni-Based Films via a High-Throughput Methodology
Frequency-Domain Thermoreflectance Automation for High Throughput Microstructural and Thermal Characterization
High-Throughput Crystallography by Quantitative Large-Area Polarized-Light Microscopy
High-Throughput Exploration of Large Material Design Spaces Using Small Samples and Bayesian Strategies
High-Throughput Processing and Accelerated Characterization of Cu–Ti Alloy
High-Throughput Time-Resolved X-Ray Computed Tomography to Characterize Flaw Evolution in LPBF Parts During Creep
High Throughput Texture Analysis of Quartz via Automated Polarized Reflective Light Microscopy
Increasing the Throughput of Ultra-High Temperature Ceramic Tensile Testing
Lightweight Services and Federated Storage for Data-Intensive Structural Materials Research
Linking Energetic Material Sensitivity and Microstructure Variability Across Length Scales
Machine Learning Assisted Structure-Property Relationships by Nanoindentation
Mapping Microstructure to Field Properties in Materials Under Dynamical Loading
Nanocrystalline Films: Imaging, Orientation Mapping, Machine Learning and Data Analytics
New Strategy of Surface Defect Detection in Metallic Coatings Using a Machine Learning-Based Model
Same-Day Product Quality Assessment of CaCl₂-Assisted Direct Reduction of Chromite via µCT and Deep-Learning Segmentation Against a Reference Dataset
Segmentation Methods for Tracking Dislocation Dynamics

Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement