Conference Logo ProgramMaster Logo
Conference Tools for MS&T25: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting MS&T25: Materials Science & Technology
Symposium Advances in Ferrous Process Metallurgy
Presentation Title Modeling Weld Oxygen Transfer in Submerged Arc Welding of High Strength Low Alloy Steels Using a Process Informed CALPHAD Method
Author(s) Thomas S. Avey, Daniel Bechetti, Charles Fisher
On-Site Speaker (Planned) Thomas S. Avey
Abstract Scope The development of novel high strength low alloy steels (HSLAs) has been accelerated to meet increasing demands for higher performance in the shipbuilding industry. The development of new welding systems needs to speed up to ensure HSLAs can be efficiently fabricated into large complex structures. Submerged arc welding (SAW) is a welding process where fusion is achieved by striking an arc between the work piece and an electrode while within a covering of molten flux. This molten flux and the melt pool interact to exchange oxygen and other elements resulting in chemistry modifications, oxide inclusions, and slag formation. In HSLAs the weld microstructure is dependent on the oxygen and oxide levels during solidification. By modeling the role of flux chemistry and weld process parameters on weld oxygen levels via a Calculation of Phase Diagrams (CALPHAD) approach, novel flux/electrode systems can be screened enabling an increased pace of weld system development.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Cerium's Effect on the Softening Kinetics of Low Carbon Steels and the Intricacies of Deformed States
Numerical Investigation of Continuous Casting Parameters on Slag Entrapment and Surface Quality in 304 Stainless Steel
A Novel Lab Scale Casting Simulator to Quantify Submerged Entry Nozzle Clogging
Analysis of the behavior change of STS transforming to austenite after delta solidification based on in-situ images
Direct Powder Forging of Mechanically Alloyed Ferritic Steels: Oxide Dispersion Effects on Microstructure and Tensile Performance
Effect of Al or Ti Addition on the Austenite Grain Size and Ferrite Formation in Ultra-Low Oxygen Weld Metal of Low-Carbon Steel
Effect of residual elements on the microstructure and properties of high strength DP steel for automotive application
Effects of Nb and Si addition on the microstructure and mechanical properties in friction welded joint of non-quenched and tempered steels
Enhancing Property Prediction in Steel Alloys through Quantitative Microstructural Data
Innovative technology for the restoration of metal steel parts.
Microstructure and mechanical properties of high nitrogen austenitic stainless steels manufactured by PM-HIP Process and the effects of Nb addition
Modeling Weld Oxygen Transfer in Submerged Arc Welding of High Strength Low Alloy Steels Using a Process Informed CALPHAD Method
Nanotomographic Characterization of Iron Pellets
Numerical Study of Flow Behavior in an Industrial RH Degasser Using a VOF-DPM Method
Research on the Flow Field of 550mm×700mm Rectangular Bloom Mold by SEN Parameters
Role of Magneto-elastic effects in the nucleation behavior and microstructural evolution in Austenite (γ) – Ferrite (α) Transformation in Fe-C Alloys: A Quantitative Phase-Field Modeling Approach
Study on the thermal stress and thermal crack formation behaviors in ferritic-silicon steels and austenitic manganese steels
Thermal Analysis Methods for Molten Steels and Thermite Welds by Optical Emission
Transient Development of Molten Slag-Metal Systems
Using Laser Heat Treatment to Influence Fatigue Crack Initiation Location

Questions about ProgramMaster? Contact programming@programmaster.org