About this Abstract |
Meeting |
2026 TMS Annual Meeting & Exhibition
|
Symposium
|
Energy Technology 2026: Advancement in Energy Materials - Theory, Simulation, Characterization, Application
|
Presentation Title |
Unveiling the atomistic mechanism of oxide scale spalling in heat-resistant alloys |
Author(s) |
Suihe Jiang |
On-Site Speaker (Planned) |
Suihe Jiang |
Abstract Scope |
An intact oxide scale adhering well to the matrix is crucial for the safe service of metallic materials at high temperatures. However, premature failure is usually caused by spallation of scales from the matrix. Although few mechanisms have been proposed to understand this phenomenon, consensus has not yet been reached. In this study, we reveal that trace sulfur impurities contaminated in high-purity raw materials prominently segregate to the interface and form a thin intermediate amorphous-like layer between the oxide scale and alloy matrix during the oxidation process. Subsequently, cracking and spallation occur preferentially between the sulfur-rich layer and alumina scale due to the weak bonding between sulfur and alumina atoms. We validate the revealed atomistic spalling mechanism by successfully eliminating the detrimental effect of sulfur via microalloying. Our findings are useful for improving adhesion of oxide scales and enhancing heat-resistant properties of other high-temperature alloys. |
Proceedings Inclusion? |
Planned: |
Keywords |
Iron and Steel, Thin Films and Interfaces, High-Temperature Materials |