Conference Logo ProgramMaster Logo
Conference Tools for MS&T25: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting MS&T25: Materials Science & Technology
Symposium Advances in Ferrous Process Metallurgy
Presentation Title Enhancing Property Prediction in Steel Alloys through Quantitative Microstructural Data
Author(s) Malavikha Rajivmoorthy, Patrick J. Cleaver
On-Site Speaker (Planned) Malavikha Rajivmoorthy
Abstract Scope Steel alloy development has traditionally relied on expert interpretation of microstructures via optical and electron microscopy to infer processing history and mechanical properties. This iterative approach is time-consuming and resource intensive. To accelerate optimization and discovery, we present a quantitative method for extracting key microstructural features—such as phase constituents, grain size and grain shape—from digital micrographs. Quantifying these structural attributes shows improvements in the accuracy of mechanical property predictions by establishing robust process-structure-property (P-S-P) relationships. By linking structural data with both mechanical performance and processing parameters, this method enables more predictive, data-driven alloy development. When integrated into automated workflows, it can significantly reduce iteration time and speed up the transition from innovation to commercialization. As a proof of concept, we apply this approach to high-strength low-alloy (HSLA) steels, highlighting the role of image segmentation in P-S-P linkage. We further demonstrate extensibility by applying microstructural learning to predict properties in microstructurally complex advanced high strength steels.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Cerium's Effect on the Softening Kinetics of Low Carbon Steels and the Intricacies of Deformed States
Numerical Investigation of Continuous Casting Parameters on Slag Entrapment and Surface Quality in 304 Stainless Steel
A Novel Lab Scale Casting Simulator to Quantify Submerged Entry Nozzle Clogging
Analysis of the behavior change of STS transforming to austenite after delta solidification based on in-situ images
Direct Powder Forging of Mechanically Alloyed Ferritic Steels: Oxide Dispersion Effects on Microstructure and Tensile Performance
Effect of Al or Ti Addition on the Austenite Grain Size and Ferrite Formation in Ultra-Low Oxygen Weld Metal of Low-Carbon Steel
Effect of residual elements on the microstructure and properties of high strength DP steel for automotive application
Effects of Nb and Si addition on the microstructure and mechanical properties in friction welded joint of non-quenched and tempered steels
Enhancing Property Prediction in Steel Alloys through Quantitative Microstructural Data
Innovative technology for the restoration of metal steel parts.
Microstructure and mechanical properties of high nitrogen austenitic stainless steels manufactured by PM-HIP Process and the effects of Nb addition
Modeling Weld Oxygen Transfer in Submerged Arc Welding of High Strength Low Alloy Steels Using a Process Informed CALPHAD Method
Nanotomographic Characterization of Iron Pellets
Numerical Study of Flow Behavior in an Industrial RH Degasser Using a VOF-DPM Method
Research on the Flow Field of 550mm×700mm Rectangular Bloom Mold by SEN Parameters
Role of Magneto-elastic effects in the nucleation behavior and microstructural evolution in Austenite (γ) – Ferrite (α) Transformation in Fe-C Alloys: A Quantitative Phase-Field Modeling Approach
Study on the thermal stress and thermal crack formation behaviors in ferritic-silicon steels and austenitic manganese steels
Thermal Analysis Methods for Molten Steels and Thermite Welds by Optical Emission
Transient Development of Molten Slag-Metal Systems
Using Laser Heat Treatment to Influence Fatigue Crack Initiation Location

Questions about ProgramMaster? Contact programming@programmaster.org