Abstract Scope |
Ionic defects are essential building blocks for properties and functionalities of complex oxides, including mixed ionic and electronic conductivity, surface kinetics and reactivity, lattice expansion and dynamics, which are important for switching devices enabling neuromorphic computing. To accurately predict electrochemical driving force needed for manipulating ionic defects for designed properties, constructing phase diagrams that correlates physical properties (conductivity, (chemical) diffusivity, lattice constant, etc.) and ionic defect concentration is essential. However, such tasks often require a large number of samples and can be susceptible to artefacts introduced by sample-to-sample variations. To tackle this challenge, we have developed a new electrochemical device that can introduce spatially-graded ionic defect concentrations in one single oxide thin film sample. Combined with materials characterization tools with high spatial resolution, we achieved high-throughput construction of phase diagrams controlled by ionic defect concentration. |