Conference Logo ProgramMaster Logo
Conference Tools for MS&T25: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting MS&T25: Materials Science & Technology
Symposium Materials and Manufacturing in Low Earth Orbit (and Beyond)
Presentation Title Towards Lifetime Predictions for Widegap Semiconductors in Low Earth Orbit
Author(s) Wolfgang Windl
On-Site Speaker (Planned) Wolfgang Windl
Abstract Scope We present a multiscale modeling framework to predict radiation-induced degradation and single event effects (SEEs) in widegap semiconductors operating in low Earth orbit (LEO). First-principles calculations are used to extract defect formation energies and charge transition levels for GaN and Ga₂O₃ under ionizing conditions. These are incorporated into TCAD simulations that model energy deposition and electron-hole cloud formation due to energetic heavy ion strikes typical of galactic cosmic radiation. The simulations resolve the spatial and temporal evolution of charge generation and recombination following single particle impacts, enabling assessment of SEE susceptibility and defect-mediated degradation pathways. This physics-based approach links atomistic defect energetics to transient device behavior under radiation exposure, providing predictive insight into long-term performance shifts. The framework supports mission-specific lifetime predictions for widegap power and sensor devices, addressing the increasing need for radiation-hardened electronics in next-generation satellite and space platforms.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Multifunctional SolidStir® Manufacturing Technology for Extra Terrestrial Applications
Atomic Oxygen-Induced Degradation in a Polyimide Film From Reactive Molecular Dynamics Simulations
Beyond microgravity: considering other biomechanical features of organoids and tissue models for in-space biomedicine and biomanufacturing
Bridging Atomistic-Continuum Simulations for Spacecraft Materials in Extreme Conditions
Building Materials Research and Manufacturing Capabilities in Low Earth Orbit
Challenges in Laser Welding for Space: Metal Vapor, Lens Fogging, and Plume Effects
Commercial Space Flight: Opportunities for Materials/Manufacturing
Delta-to-Gravity™: Machine Learning Informed Predictive Analytics for Microgravity and Scalable In-Space Manufacturing
Instrumentation for the Testing of Laser Beam Welding under Simulated Space Conditions via Parabolic Flight
Laser Beam Welding in Space – From Science to Technology Development
Laser Directed Energy Deposition Additive Manufacturing of Lunar Regolith Simulant
Leveraging Microgravity to Produce Bacteriorhodopsin-Based Thin Films for Biohybrid Applications
Machine Learning-Driven Design of Polymers Resistant to Atomic Oxygen in Low Earth Orbit
Modifying Properties of Lunar Regolith Via High-Power Microwave Torch
Numerical Modeling of Laser Beam Welding for In-Space Applications: Insights from Parabolic Flight Experiments
Optimizing Surface Melting Techniques for In-Space Aluminum Fabrication
Oxide Dispersion Strengthening via Additive Processing: A Revolutionary New Approach for High Temperature Alloys
Porosity formation and microstructure characterization in pulsed LBW of 316L SS under space conditions and different levels of gravity
Scientific Discovery Through Engineering Tech – How the MOVE: CAN-DO Project Builds Mutually Beneficial Collaborations
The Design of a Robotic Cold Welding and Deformation System for In-Space Manufacturing
The Generation of Gold Nanospheres in the Microgravity Environment of Low Earth Orbit
The Ionizing Radiation Environment in Low Earth Orbit
Towards Lifetime Predictions for Widegap Semiconductors in Low Earth Orbit
Towards On-Orbit Synthesis of Metal-Organic Frameworks
Ultra-Strong, Lightweight Polymer Composite Films for Space Applications

Questions about ProgramMaster? Contact programming@programmaster.org | TMS Privacy Policy | Accessibility Statement