Conference Logo ProgramMaster Logo
Conference Tools for MS&T24: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools

About this Abstract

Meeting MS&T24: Materials Science & Technology
Symposium Honorary Symposium in Celebration of Prof. Michel Barsoum’s 70th Birthday
Presentation Title Surface Electronic Structure of the Zr3SnC2 MAX Phase
Author(s) Takahiro Ito, Thierry Ouisse, Manaya Mita, Kiyohisa Tanaka, Lourent Jouffret, Hanna Pazniak, Serge Quessada
On-Site Speaker (Planned) Takahiro Ito
Abstract Scope MAX phase compounds, such as Mn+1AXn, have attracted significant attention for their potential to be converted into MXenes, two-dimensional materials formed by removing the A atoms. In this study, we have performed angle-resolved photoemission spectroscopy (ARPES) on Zr3SnC2 to directly investigate the electronic structure of this system. We found that Zr3SnC2 single crystals exhibit non-reconstructed surfaces after mechanical cleavage, with distinct surface state bands characterized by well-defined energy dispersions. Just after cleavage, the contribution of those surface bands to the ARPES signal largely prevails over the bulk one. Those surface state dispersions can be satisfactorily retrieved and explained by density functional theory (DFT). Since the lack of surface reconstruction was also observed on other 211 MAX phases, this result can probably be generalized to many MAX phases. The result suggests the feasibility of studying surface topological properties using DFT for various MAX phases, assuming non-reconstructed surfaces as observed in Zr3SnC2.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

1D Lepidocrocite Titania-Based Nanomaterials, Their Diverse Morphologies and Exceptional Properties
Anomalous Crack Growth Resistance in Atomically Layered Ternary Carbides
Applications of 1D Titania and Other Low Dimensional Oxides for National Defense
Atomic and Electronic Structures of One-Dimensional Titania Lepidocrocite
Challenges and Opportunities in Integrating MXene into Ceramic Nanocomposites
Characterization and Synthesis of Novel One-Dimensional Lepidocrocite Titanium-Oxide Nanofilaments
Characterization of MAX Phases by Neutron Diffraction - Michel Barsoum's Time at LANSCE
Effect of Cationic Exchange on the Hydration and Swelling Behavior of MXenes
Electronic and Photocatalytic Properties of Colloidal One-Dimensional Titanium Oxide Lepidocrocite Nanofilaments
Enhancing the Oxidation Resistance of MXenes by Selective Edge Functionalization
From MAX Phases to Carbon Nanomaterials and MXenes
Honoring Prof. Michel Barsoum: Pioneering Contributions to Ceramic Sciences and Engineering
Hydroxides-Derived Nanostructures: Scalable Synthesis, Characterization, Properties, and Potential Applications
MAX Phases and MXenes as Additive Materials in Composites
MAX Phases for Nuclear Applications
Michael Barsoum – Pre-MAX Days at MIT
New Ternary Nanolaminated Carbide: Ti2NbAlC1.82 and TiNbAlC0.91
O-1: Anisotropic Cracking and Lack Thereof in MAX Phases
O-2: Kerosine-Fuelled High Velocity Oxy-Fuel (HVOF) Ti2AlC Coating on P91 Steel
On the Design and Characterization of Novel Ceramics for High Performance Applications
Past, Present, and Future of MAX Phases
Phase Formation and Thermal Stability of MAX and MAB Phase Thin Films
Progress of Unravelling the Magnetic Complexity of iMAX Phases
Scalable, Inexpensive, One-Pot, Facile Synthesis of Crystalline, Two-Dimensional, Birnessite Flakes with Quaternary Ammonium Hydroxides
Self-Assembly of Inorganic Gels and Networks From Unique 1-Dimensional Lepidocrocite Phase Titanium Oxide
Stability and Properties of MAX Phases with Compositionally Complex M-layers
Surface Chemistry and Counter Cation Control of Carrier Dynamics in One-Dimensional Lepidocrocite TiO2
Surface Electronic Structure of the Zr3SnC2 MAX Phase
Surface Modifications of MAX Phases and MXenes for Catalytic Applications
Synthesis Science of MAX Phases: A Chemist’s Journey to New Functional Ceramics
Tuning the 1D to 2D Transition in Lepidocrocite Titanium Oxide via Polymer Wrapping
Two-Dimensional MXenes: from Discovery to Recent Developments
Unraveling Mechanistic Origins of Plasticity in MAX Phases: Dislocations, Kinking, and Delamination

Questions about ProgramMaster? Contact programming@programmaster.org