About this Abstract |
Meeting |
2022 TMS Annual Meeting & Exhibition
|
Symposium
|
Hume-Rothery Symposium on Connecting Macroscopic Materials Properties to Their Underlying Electronic Structure: The Role of Theory, Computation, and Experiment
|
Presentation Title |
First-principles Materials Design for Mechanically-controlled Topological Magnetism |
Author(s) |
Daniil Kitchaev, Anton Van der Ven |
On-Site Speaker (Planned) |
Daniil Kitchaev |
Abstract Scope |
A central component of spintronics development is the search for materials capable of hosting exotic magnetic textures, and coupling these structures to dynamic perturbations such as elastic strain. Free energy models built up from first-principles electronic structure data offer an efficient tool to derive both general design principles and the specific materials for realizing these behaviors. I will discuss recent progress in this design of tunable magnetism focusing on the search for materials capable of mechanically actuating the formation of (anti)skyrmion spin textures over wide temperature ranges. I will describe a comprehensive exploration of high-temperature antiskyrmion hosts based on the inverse Heusler structure in which we identify synthetically-accessible compositions that allow for antiskyrmion formation to be actuated mechanically. This analysis establishes the first set of rigorous design criteria for engineering thermally-robust, mechanically-controlled topological magnetism, and identifies a number of promising chemical spaces for experimentally realizing this behavior. |
Proceedings Inclusion? |
Planned: |
Keywords |
Magnetic Materials, Computational Materials Science & Engineering, Modeling and Simulation |