ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium High Entropy Alloys VI
Sponsorship TMS Functional Materials Division
TMS Structural Materials Division
TMS: Alloy Phases Committee
TMS: Mechanical Behavior of Materials Committee
Organizer(s) Peter K. Liaw, University of Tennessee
Michael C Gao, National Energy Technology Lab
Xie Xie, FCA US LLC
Gongyao Wang, Alcoa Technical Center
E-Wen Huang, National Chiao Tung University
Tirumalai S. Srivatsan, The University of Akron
Scope This symposium will provide a new venue for presentation of research on the fundamental understanding and theoretical modeling of high-entropy alloy (HEA) processing, microstructures, and mechanical behavior.

In contrast to conventional alloys, which are based upon one principal element, HEAs have multiple principal elements, often five or more. The significantly high entropy of the solid solution stabilizes the solid-solution phases in face-centered-cubic (FCC), body-centered-cubic (BCC), and hexagonal close-packed (HCP) structures against intermetallic compounds. Moreover, carefully-designed HEAs possess tailorable properties that far-surpass their conventional alloys. Such properties in HEAs include high strength, ductility, corrosion resistance, oxidation resistance, fatigue and wear resistance. These properties will undoubtedly make HEAs of interest for use in biomedical, structural, mechanical, and energy applications. Given the novel and exciting nature of HEAs, they are poised for significant growth, not unlike the bulk metallic glass or nanostructured alloy scientific communities, and present a perfect opportunity for a new symposium.

Topics of interest include but not limited to:
(1) Material fabrication and processing, such as homogenization, nanomaterials, and grain-boundary engineering
(2) Advanced characterization, such as neutron scattering and three-dimensional (3D) atom probe
(3) Thermodynamics and diffusivity: measurements and modeling
(4) Mechanical behavior, such as fatigue, creep, and fracture
(5) Corrosion, physical, magnetic, electric, thermal, coating, and biomedical behavior
(6) Theoretical modeling and simulation using density functional theory, molecular dynamics, Monte Carlo simulations, phase-field and finite-elements method, and CALPHAD modeling
(7) Industrial applications
Abstracts Due 07/16/2017
Proceedings Plan Planned: TMS Journal: Metallurgical and Materials Transactions
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE
No additional information can be displayed at this time.


Questions about ProgramMaster? Contact programming@programmaster.org