ProgramMaster Logo
Conference Tools for 2023 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2023 TMS Annual Meeting & Exhibition
Symposium Material Behavior Characterization via Multi-Directional Deformation of Sheet Metal
Sponsorship TMS Materials Processing and Manufacturing Division
TMS: Shaping and Forming Committee
Organizer(s) Daniel R. Coughlin, United States Steel Corp
Cody A. Miller, Los Alamos National Laboratory
Kester D. Clarke, Los Alamos National Laboratory
Piyush Upadhyay, Pacific Northwest National Laboratory
John E. Carsley, Novelis, Inc.
Scope Engineering sheet metals are customarily characterized by simple mechanical tests to meet mechanical properties given in OEM specifications. A set of uniaxial tension tests suffice to provide various standardized properties. However, when OEMs stamp a blank sheet to shape their final products, the materials experience quite complicated histories of straining paths that may significantly differ from behavior that is characterized by conventional mechanical tests. The advanced constitutive models of today require material parameters obtained under multiaxial and complex loading conditions. Over the past decades, the sheet metal forming community has observed that such advanced constitutive models improve the predictive accuracy on formability and springback. However, to successfully train the models, unconventional experimental methods are often required. Here a list of notable experimental methods is given: 1) the cruciform test was designed to strain sheet metals in various stress ratios; 2) The tension-compression test was designed to provide a deformation history representing the bending and unbending of sheets during stamping; 3) The hydraulic bulge test is a widely spread method to obtain hardening curves to large levels of plastic strain, which standard uniaxial tests cannot provide; 4) Combination of non-coaxial loadings can provide various stress states, to which the phase transition is sensitive; 5) An experimental setup consisting of multiple steps with various pre-straining is also practiced in order to observe constitutive behaviors under complex histories of deformation that may occur in typical industrial stamping processes; 6) High speed tests can subject the materials to a rate of speed similar to what is actually observed during the stamping process.

The objective of this symposium is to explore numerous advances in experimental testing and computational methods used for material characterization, constitutive modeling, and analyses pertaining to sheet metal deformation in multiple directions along multiple axes or with changing strain path conditions. Abstracts are encouraged on research of material behavior related to microstructure based on multiple directional deformation including but not limited to:
• Improvements and new methods of mechanical property measurement.
• Characterization of phase transformations and deformation mechanisms in multiphase microstructures during forming.
• Theory and modeling related to the mechanical properties.
• Deformation simulations, forming processes, friction and springback.
• Multi-directional mechanical testing and advanced strain/stress measurements.
• Integration of scientific knowledge with manufacturing practices.
• Development of accurate constitutive relationships.

Abstracts Due 07/17/2022
Proceedings Plan Planned:
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

A Novel Anisotropic Continuum Damage Evolution Model Coupled with Anisotropic Hardening under Non-proportional Deformation Paths
A Practical Edge Fracture Limit for the Advanced High Strength Steels
Anisotropic Behaviour and Deformation Mechanism of Ti407 Sheets with Reduced Al Content
Characterization and Modeling of Anisotropic Fracture of Advanced High Strength Steels
Characterization of Commercially Pure Titanium Twinning under Proportional Loading Paths
Determination of Optimum Tension-compression Loops/Cycles for Estimating Yoshida-Uemori Constitutive Model Parameters for Advanced Lightweighting Materials
Examining Temperature, Strain Rate, and Strain State on TRIP-assisted Steel Forming Behavior
Predicting Strength and Ductility of Multi-directionally Deformed Steel Plate: a Coupled Distortional Hardening and Continuum Damage Mechanics
Simplifying Complex Loading for Training Advanced Constitutive Models: Treating Sheet Metal Like It’s Not 2D


Questions about ProgramMaster? Contact programming@programmaster.org