ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Additive Manufacturing of Metals: Fatigue and Fracture
Sponsorship TMS Materials Processing and Manufacturing Division
TMS: Additive Manufacturing Bridge Committee
Organizer(s) Nikolas Hrabe, National Institute of Standards and Technology
Steve Daniewicz, University of Alabama
Nima Shamsaei, Auburn University
Mohsen Seifi, Case Western Reserve University/ASTM International
John J Lewandowski, Case Western Reserve University
Scope The current understanding of fatigue and fracture behavior of additive manufacturing metals is limited and must be expanded before widespread use in fatigue and fracture critical applications can be fully realized. It is the purpose of this symposium to move toward that expanded understanding by providing a forum to present research results from investigations into fatigue and fracture behavior of additive manufacturing of metals. Topics include:

• Processing-structure-properties-performance investigations (more detail below)
• Applicability of existing fatigue and fracture test methods to AM materials
• Development of new fatigue and fracture test methods for AM materials (e.g. small-scale testing)
• Predictive Design Tools (e.g. critical flaw size measurements)
• Non-Destructive Evaluation (NDE) techniques for AM as they relate to Fatigue and Fracture
• Integrated Computational Materials Engineering (ICME) as it relates to Fatigue and Fracture
• Material and/or Part Qualification as they relate to Fatigue and Fracture

To further specify the scope of the processing-structure-property-performance investigations, processing includes machine settings (e.g. layer thickness), melt parameters (e.g. energy density), post-processing (e.g. heat treatment, surface treatment), and feedstock variables (e.g. flowability, spreadability, particle size distribution) that can directly impact fatigue and fracture performance of parts. Structure includes crystallographic microstructure (e.g. texture), internal defects (e.g. pores, inclusions), external defects (e.g. surface roughness), residual stress, and chemistry. Properties include all fatigue and fracture properties (e.g. high-cycle fatigue, low-cycle fatigue, linear elastic fracture toughness (KIc), elastic-plastic fracture toughness (J-int), fatigue crack growth rate, and impact toughness (Charpy)). Performance includes any end-product testing.
Abstracts Due 07/16/2017
Proceedings Plan Undecided
No additional information can be displayed at this time.

Questions about ProgramMaster? Contact