ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Additive Manufacturing of Metals: Fatigue and Fracture
Sponsorship TMS Materials Processing and Manufacturing Division
TMS: Additive Manufacturing Bridge Committee
Organizer(s) Nikolas Hrabe, National Institute of Standards and Technology
Steve Daniewicz, University of Alabama
Nima Shamsaei, Auburn University
Mohsen Seifi, Case Western Reserve University/ASTM International
John J Lewandowski, Case Western Reserve University
Scope The current understanding of fatigue and fracture behavior of additive manufacturing metals is limited and must be expanded before widespread use in fatigue and fracture critical applications can be fully realized. It is the purpose of this symposium to move toward that expanded understanding by providing a forum to present research results from investigations into fatigue and fracture behavior of additive manufacturing of metals. Topics include:

• Processing-structure-properties-performance investigations (more detail below)
• Applicability of existing fatigue and fracture test methods to AM materials
• Development of new fatigue and fracture test methods for AM materials (e.g. small-scale testing)
• Predictive Design Tools (e.g. critical flaw size measurements)
• Non-Destructive Evaluation (NDE) techniques for AM as they relate to Fatigue and Fracture
• Integrated Computational Materials Engineering (ICME) as it relates to Fatigue and Fracture
• Material and/or Part Qualification as they relate to Fatigue and Fracture

To further specify the scope of the processing-structure-property-performance investigations, processing includes machine settings (e.g. layer thickness), melt parameters (e.g. energy density), post-processing (e.g. heat treatment, surface treatment), and feedstock variables (e.g. flowability, spreadability, particle size distribution) that can directly impact fatigue and fracture performance of parts. Structure includes crystallographic microstructure (e.g. texture), internal defects (e.g. pores, inclusions), external defects (e.g. surface roughness), residual stress, and chemistry. Properties include all fatigue and fracture properties (e.g. high-cycle fatigue, low-cycle fatigue, linear elastic fracture toughness (KIc), elastic-plastic fracture toughness (J-int), fatigue crack growth rate, and impact toughness (Charpy)). Performance includes any end-product testing.
Abstracts Due 07/16/2017
Proceedings Plan Planned: Supplemental Proceedings volume
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

3D Printing of Metallic Glasses by Thermoplastic Forming
Accounting for Thermal Process Induced Residual Stress in Additive Manufacturing Based Laser Cladding Repair of High-strength AerMetŪ100 Steel
Additive Manufacturing: Efficient Evaluation of Fatigue Properties Using Short-time Procedures Based on Cyclic Indentation and Physical Quantities
Anisotropic Fatigue Properties of IN718 Produced by Powder Bed Fusion
Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing
Effect of Hot Isostatic Pressing on Fatigue Properties of Additively Manufactured Ti-6Al-4V-ELI
Effect of Loading Direction and Heat Treatment on Fatigue Crack Growth Rate of CoCrW Alloy Additively Manufactured by Selective Laser Melting
Evaluation of Tensile and Low Cycle Fatigue Properties of 316 Stainless Using Binder Jetting Additive Manufacturing Technology
Evaluation of the Cyclic Stress-strain Behavior of Additively Manufactured AlSi10Mg
Evaluation of The Mechanical Properties of 15Cr-5Ni Stainless Steel Produced by Direct Metal Laser Sintering
Fatigue Behavior of DMLS IN718 and Ti-6Al-4V through Coupled Modeling and In Situ Experiments
Fatigue Characteristics of Additively Manufactured Aerospace Materials
Fatigue Crack Growth Anisotropy in Selective Laser Melting Produced Alloy 718 at Ambient and Elevated Temperatures
Fatigue of Solid State Additive Manufactured Inconel 625
Fatigue Prediction for AlSi10Mg Parts Produced by Laser Powder-bed Fusion
Fatigue Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting
Fatigue Propterties of AlSi10Mg Manufactured by SLM: the Role of Defects
Fracture Characterization of Additive Manufactured Ti-6Al-4V
High Temperature Properties of IN-718: Conventional versus Additively Manufactured
Influence of Build-angle on Charpy Impact Fracture of Laser Powder Bed 3D-printed Stainless Steel and Aluminum Cast Alloy
Investigating Defect Formation Mechanisms in Powder-bed Metal Additive Manufacturing Using Synchrotron-based High-speed X-ray Radiography and Microtomography
Investigating Strain Localization in Additively Manufactured Ti-alloys Using Experimentally Validated Crystal Plasticity Simulations, Explicitly Accounting for Residual Stresses
Mechanical Property and Microstructural Comparison of Additively Manufactured Titanium (Ti64) Lattices and Bulk Material
Microstructural Effects on Environmental Assisted Crack Growth Behaviors of Austenitic Stainless Steel by Laser Powder Bed Fusion
Relating Defects at the Fracture Surface to Physical Properties of AM Materials
Strength, Fatigue, Fracture, and Microstructure of Additively Manufactured Austenitic Stainless Steel
Study on Dominant factors on Fatigue Strength of Additive Manufactured Ti-6Al-4V Alloy
Tensile and Fatigue Performance Ti-6Al-4V ELI and Non-ELI Material Manufactured by Selective Laser Melting
The 3rd Sandia Fracture Challenge: Blind Predictions of Fracture Performance in Laser Powder Bed 316L
The Influence of Build Orientation on the Thermal Fatigue Behavior of Additively Manufactured AlSi10Mg Coupons
Towards a Predictive Failure Model for Metallic Lattice Materials Manufactured with Laser Powder Bed Fusion


Questions about ProgramMaster? Contact programming@programmaster.org