ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Application of Solidification Fundamentals to Challenges in Metal Additive Manufacturing
Sponsorship TMS: Additive Manufacturing Bridge Committee
Organizer(s) Alex Plotkowski, University of Tennessee - Knoxville
Kevin Chaput, Materials and Manufacturing Directorate
Lang Yuan, GE Global Research
Scope Additive manufacturing is a disruptive technology, offering increased part complexity, short lead times, and opportunities for local microstructure control. Microstructure and defect development in AM processes is influenced by the solidification and melt pool dynamics, but currently the application of fundamental solidification theories to AM process conditions has not been fully explored. Furthermore, increased demand for customized material properties and localized microstructure control will inevitably require a detailed understanding of solidification in these processes. The goal of this symposium is to highlight research in metal additive manufacturing that applies fundamental solidification theory to understand and solve contemporary processing challenges. This symposium will inform the solidification community about the unique characteristics of AM and guide the AM community to recognize the parallels that exist in the welding and solidification literature. Both experimental and modeling submissions are encouraged, especially in which modeling or theory is connected to experimental results or in-situ characterization to rationalize process challenges and propose novel solutions. The symposium will consist of 4 total sessions.
Abstracts Due 07/16/2017
Proceedings Plan Planned: Supplemental Proceedings volume
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

Application of Interface Response Function Theory to Describe Non-equilibrium Solidification during Welding and Additive Manufacturing
Building Microstructure-cooling Rate Relationships in Laser Welded Uranium-6 Wt. Pct. Niobium for Laser Powder Bed Fusion Processing
Cellular Automata Modeling of Nucleation and Grain Growth in Alloy-based Additive Manufacturing
Characterization of Rapid Cooling during Laser Powder Bed Fusion Additive Manufacturing of Ti-6Al-4V Using In Situ High Speed Synchrotron X-ray Diffraction
Crystal Growth in Face-centred-cubic Alloys Made by Additive Manufacturing: Epitaxial Growth, Branching and Splitting
Development of an In-situ TEM with Laser Sintering Capabilities at Sandia National Laboratories
Dynamics of Melting and Resolidification: Application to the Inter-layer Band Microstructure in Laser Metal Deposition
Enabling New Additive Alloys through Solidification Control
Experimental and Simulation Study of Solidification and Micro-structural Evolution of Liquid Metal Alloys for Additive Manufacturing Process Simulation and Materials Design
Fast Synchrotron X-ray Imaging of the Mechanisms Controlling Laser Additive Manufacturing
Fluid Dynamics Effects on Microstructure Prediction in the Laser Additive Manufacturing Process
Heat Transfer and Fluid Flow during Fabrication of Overhang Structure in Laser-powder Bed Fusion Additive Manufacturing
In-situ Monitoring of Solidification during Powder-deposition Based Additive Manufacturing
Laser Powder Bed Fusion of Metal and Bioactive Glass Revealed Via Synchrotron X-ray Imaging
Microstructural Modeling of the Solidification of Alloys in Additive Manufacture
Microstructure and Wear Resistance of Laser Deposited Cobalt-free Cu-based Alloy for Valve Seat Application
Microstructure Control in Laser Powder Bed Fusion: Correlating Directional Solidification Parameters with Selected Process Variables and Material’s Properties
Microstructure Formation in Rapid Solidification of Electron-beam Melted Ni-Sn Alloys
Phase-field Modeling of Solidification Microstructures during Additive Manufacturing
Phase-field Modeling of Solidification under SLM Conditions
Simulating Grain Formation during Metal Additive Manufacturing (AM): Potential Pathways for Producing Equiaxed Grain Structures
Solid Solubility Extension and Microstructural Evolution during Single and Double Pass Laser Scans in Al-Co and Al-Ce Binary Alloys
Solidification Cracking during Selective Laser Melting (SLM) of Nickel-base Superalloy Inconel-738LC
The Effect of Grain Refiners on the Columnar to Equiaxed Transition in Metal Additive Manufacturing of Aluminium Alloys
Tomography and 3D Grain Mapping for Additive Manufacturing Qualification


Questions about ProgramMaster? Contact programming@programmaster.org