ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting Materials Science & Technology 2020
Symposium Multi-material Additive Manufacturing: Processing and Heterogeneous Materials Design
Sponsorship TMS Additive Manufacturing Committee
Organizer(s) Hang Yu, Virginia Polytechnic Institute And State University
Steven Boles, Hong Kong Polytechnic University
Michael Gibson, Desktop Metal
Lonnie Love, Oak Ridge National Laboratory
Leon H. Prentice, SDI Ltd
Scope This symposium aims to provide a forum for the dissemination and discussion of state-of-the-art of multi-material additive manufacturing. Using various processes, 3D objects with locally controlled composition, microstructure and properties can be fabricated and designed. Examples include functionally graded parts with designed composition profiles, printed, multifunctional assemblies, and composites with sharp, designed property gradients. This capability unlocks a new space for design and fabrication of a wide variety of objects in which the meso-scale materials distribution and the topology, shape of the 3D objects can be simultaneously controlled. In structural and thermal applications, the stress and thermal fields are often highly non-uniform; control of the materials distribution through multi-material additive manufacturing enables locating different properties at different positions for the optimum overall performance of a 3D object. Multi-material additive manufacturing may also enable fabrication of objects with designed internal architectures to implement unprecedented functionality.

New challenges arise in multi-material additive manufacturing as-compared to single material processing. In processing, for example, sharp compositional gradients are sometimes desired in design; understanding material incompatibilities across such sharp interfaces, and the degree to which such gradients can be maintained in the end-product is crucial. In design, robust methodologies are needed to determine the optimal materials distribution for given manufacturing constraints and for specific mechanical, thermal, or multi-physics applications. In implementation, the designed gradients must be incorporated into 3D modelling packages so that parts can actually be made. This symposium will serve as a venue for the government, academic, and industrial professionals to share ideas, address fundamental challenges, and define future trends in multi-material additive manufacturing. Both experimental work on multi-material additive manufacturing systems and measurements and theoretical work on computational design and optimization are welcome to provide new physical insights and promote this sub-field of additive manufacturing. All types of materials are of interest, from metals, ceramics, and composites to polymers and bio-materials.
Research areas of particular interests include, but are not limited to:
 Emerging technologies for multi-material additive manufacturing.
 Processing challenges and solutions in multi-material additive manufacturing, e.g. control of the local composition, stress concentrations at interfaces, reactions across adjacent layers, residual stresses and thermal stresses.
 New materials, structures, and functions enabled by multi-material additive manufacturing.
 Design and optimization for materials distribution and manufacturing strategy in multi-material additive manufacturing.

Abstracts Due 05/31/2020
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

Additive Manufacturing Design of Functionally Graded Materials
Aluminum Powders for Additive Manufacturing
Direct Digital Manufacturing (DDM): The Integration of Multimaterials, Additive and Subtractive Manufacturing
Experimental -- Computational Approach for The Design of Functionally Graded Materials by Additive Manufacturing
Material Layering with Binder Jet 3D Printing to Improve Magnetocaloric Functionality
Multimaterial Additive Manufacturing at Penn State’s CIMP-3D
Multimaterial, Multifunctional Design of Metallic Components
NEW PRESENTATION: 3D Printing of Multi-functional Structures with Multiple Materials
Precision Forming of FGMs via Directed Energy Deposition and Alloy Development Feeder
Wire-arc Additive Manufacturing of Inconel 740H Superalloy – P91 Steel Bimetallic Structures: Microstructure Characterization and Post-Heat Treatment Design


Questions about ProgramMaster? Contact programming@programmaster.org