ProgramMaster Logo
Conference Tools for 2017 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2017 TMS Annual Meeting & Exhibition
Symposium Characterization of Materials through High Resolution Coherent Imaging
Sponsorship TMS Structural Materials Division
TMS: Advanced Characterization, Testing, and Simulation Committee
Organizer(s) Ross Harder, Argonne National Lab
Xianghui Xiao, Argonne National Laboratory
Richard Sandberg, Los Alamos National Laboratory
Saryu Fensin, Los Alamos National Laboratory
Brian Abbey, LaTrobe University
Ana Diaz, Paul Scherrer Institut
Scope Objective: This symposium will provide a venue for presentations regarding the use of coherent diffraction imaging techniques (x-ray and electron diffraction imaging, ptychography, holography) and phase contrast imaging techniques for high-resolution characterization in all classes of materials.

Background and Rationale:
A high degree of spatial coherence is an attractive property in x-ray and electron beams. Those from modern synchrotrons and electron microscopes have enabled the development of novel imaging methods. In some cases these imaging methods provide resolution beyond that achieved with optics and can also provide remarkable sensitivity to a variety of contrast mechanisms.
The two methods that will be the focus of this symposium are coherent diffractive imaging (CDI) and phase contrast imaging (PCI). Both explicitly take advantage of the coherence properties of the incident beams. CDI has rapidly advanced in the last fifteen years to allow characterization of a broad range of materials, including nanoparticles, strained crystals, biomaterials and cells. PCI has been widely employed in dynamics and engineering studies of materials, geophysics, medicine and biology. Various techniques making use of both x-rays and electrons have been developed that provide unique characterization abilities such as three dimensional strain mapping and non-destructive three dimensional quantitative tomographic imaging.

Areas of interest include, but are not limited to:
(1) All x-ray based techniques including Bragg CDI, Fresnel CDI, ptychographic CDI, propagation phase contrast imaging, interferometry imaging, and analyzer based phase-contrast imaging
(2) All electron based techniques including ptychography and electron CDI
(3) All structural and functional materials systems needing high resolution imaging
(4) Industrial applications
(5) Development of new techniques and new sources
Abstracts Due 07/17/2016
Proceedings Plan Planned: Supplemental Proceedings volume
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

3D Imaging of High-pressure Induced Deformation Twinning in a Nanocrystal
3D X-ray Imaging of Defect Dynamics in Nanostructured Materials
Anisotropic Growth Patterns in Four Dimensions
Applications of High Resolution Coherent X-Ray Imaging Techniques for Investigating Additively Manufactured Materials
Biological and Bio-inspired Multifunctional Structural Materials
Biological Imaging Using Combined Ptychography and X-ray Fluorescence
Biomimetic CaCO3 Complex Morphologies Studied by Coherent X-ray Diffraction Imaging
Characterizing Evolving Processes through Coupled CDI and Molecular Dynamics Studies
Coherent Diffractive Imaging with Wavelength Spatial Resolution using 13.5nm High Harmonics: Full Field, High-contrast Imaging on a Tabletop
Coherent X-ray Diffraction Measurements of Lattice Distortions Caused by Ion Bombardment
Coherent X-ray Imaging at Future High Brightness Synchrotron Sources
High Resolution Coherent Imaging for Materials
High Speed Tomographic Imaging of Materials during Uniaxial Loading
Imaging Strain Fields by Ptychographic Topography
In-Situ and In-Operando Examination of Structure-Functional Relations in Porous Materials for Energy Conversion and Storage with Nano- and Micro- Synchrotron X-ray Computed Tomography
In-situ Deformation and Damage Assessment in Materials under Dynamic Loading Using High Speed Synchrotron X-ray Phase Contrast Imaging
In-situ Phase Contrast Nano-tomography at ID16B
Nanoscale 4D Microstructural Evolution of Precipitates in Aluminum Alloys Using Transmission X-Ray Microscopy (TXM)
Nanoscale Chemical Imaging of an Individual Catalyst Particle with Soft X-ray Ptychography
Phase Contrast Tomography to Document Gypsum Dehydration in Single Crystals and Polycrystalline Materials
Photoelastic Ptychography: A New Approach for Quantitative Stress Determination
Polychromatic Bragg Coherent X-ray Diffraction Imaging for Rapid Measurements
Progress towards Dichroic Bragg Coherent Diffractive Imaging
Real-time Direct and Diffraction Hard X-ray Imaging of Ultra-fast Processes
Revolutions in Coherent X-ray Sources Will Enable Dynamic Nanometer Scale Strain Imaging in Structural Materials
Soft-X-ray Ptychographic Imaging of Shale
Some Recent Advances in the Theory and Modeling of Phase Contrast Imaging
Speckle-based X-ray Imaging at Diamond Light Source
Unraveling the Structure-function Relationships in Ion Implanted Nanodiamonds
Zernike Phase Contrast for Hard X-ray Microscopy


Questions about ProgramMaster? Contact programming@programmaster.org