ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Dynamic Behavior of Materials VIII
Sponsorship TMS Structural Materials Division
TMS: Mechanical Behavior of Materials Committee
Organizer(s) Saryu Fensin, Los Alamos National Laboratory
George Thompson Gray, Los Alamos National Laboratory
Naresh Thadhani, Georgia Institute of Technology
Kenneth S Vecchio, University of California, San Diego
Marc Andre Meyers, University of California, San Diego
Scope The dynamic behavior of materials encompasses a broad range of phenomena with technological applications in both the military and civilian sectors. Examples of such phenomena include deformation, fracture, fragmentation, shear localization, chemical reactions under extreme conditions, and processing (combustion synthesis; shock compaction; explosive welding and fabrication; shock and shear synthesis of novel materials).

It is recognized today that materials aspects are of utmost importance in dynamic events. The macromechanical and physical processes that govern the phenomena manifest themselves, at the micro structural level, by a dazzling complexity of defect configurations and effects. Nevertheless, these processes/mechanisms can be quantitatively treated on the basis of accumulated knowledge. The advent of in-situ techniques available at facilities like NIF, MARIE, LCLS, Omega have enabled us to make significant strides towards gaining more insights into the basic mechanisms that drive materials response under dynamic loading. These coupled with modeling tools from continuum to ab-initio computations, enable realistic predictions of material performances and are starting to guide not only the design process but also our further micromechanical understanding of deformation processes at every level, including the basic dislocation mechanisms. In addition to tradition materials, we have also made progress in understanding the extreme response of emerging materials, such as nano-crystalline, BMGs, and high entropy alloys.

Publication: None
Abstracts Due 07/16/2017
Proceedings Plan Undecided
No additional information can be displayed at this time.

Questions about ProgramMaster? Contact