ProgramMaster Logo
Conference Tools for Materials Science & Technology 2021
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting Materials Science & Technology 2021
Symposium High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond (II)
Organizer(s) Michael C. Gao, National Energy Technology Laboratory
Xingbo Liu, West Virginia University
Peter K. Liaw, University of Tennessee
Jian Luo, University of California, San Diego
Yiquan Wu, Alfred University
Yu Zhong, Worcester Polytechnic Institute
Mitra L. Taheri, Johns Hopkins University
Amy J. Clarke, Colorado School of Mines
Scope One main objective of this high-entropy materials (HEMs) symposium is to connect the high entropy alloys (HEAs) or the more broadly-defined multi-principal-element alloys (MPEAs) community with the conventional materials community that has already created a huge number of multi-component compounds such as intermetallics, ceramics, and functional materials. Another objective is to promote the design and development of high-performance materials for industrial applications using the high entropy concept. It is recognized that configurational entropy does not always dominate materials properties, and efficient and reliable methods are urgently needed to accelerate discovery of new cost-effective materials for wide arrays of industrial applications. As such this symposium solicits recent quality research on fundamental understanding and applications of high-entropy materials.

Topics of interest include but not limited to:
(1) Combinatorial synthesis methods in bulk and thin film forms
(2) Advanced manufacturing (e.g., additive manufacturing, friction stir welding)
(3) Novel microstructures (e.g., heterogeneous, hierarchical)
(4) High-throughput characterization of the phases, microstructures, and properties
(5) Advanced characterization, such as neutron and synchrotron scattering and atom probe tomography
(6) Thermodynamic and kinetic properties
(7) Mechanical properties (e.g., elasticity, plasticity, strength, hardness, ductility, toughness, creep, and fatigue)
(8) Other physical and functional properties, such as electric/ionic/thermal conductivities, and magnetic, magnetocaloric, thermoelectric, superconducting, dielectric, optical) properties.
(9) Environmental properties (e.g., aqueous corrosion, oxidation, irradiation, hydrogen storage, cryogenic temperatures, high temperatures, high pressure)
(10) Interfaces in HEMs
(11) Theoretical modeling and simulation using density functional theory, molecular dynamics, dislocation theory and dynamics, Monte Carlo, phase-field, CALPHAD, and continuum.
(12) Machine learning, artificial intelligence
Abstracts Due 03/15/2021
Proceedings Plan Undecided
. . . you are welcome to do so. Just click on the button. Note: To submit an abstract, you must be registered and logged into the system.

Questions about ProgramMaster? Contact