ProgramMaster Logo
Conference Tools for MS&T21: Materials Science & Technology
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting MS&T21: Materials Science & Technology
Symposium AI for Big Data Problems in Advanced Imaging, Materials Modeling and Automated Synthesis
Sponsorship TMS: Computational Materials Science and Engineering Committee
Organizer(s) Mathew Cherukara, Argonne National Lab
Badri Narayanan, University of Louisville
Subramanian Sankaranarayanan, University of Illinois (Chicago)
Scope The advent of big data analytics in computer science along with the reduction in computing and memory costs over the last few years have brought powerful machine learning (ML) techniques to the forefront; such methods are now routinely used in business, transactional and social media applications. In particular, the rise of deep neural networks or deep learning (DL) over the last 3-5 years has revolutionized the fields of computer vision, mechanical automation and natural language processing to name a few. In the physical sciences, deep learning methods have been employed to accelerate data analysis for time-resolved X-ray and electron imaging, to design new molecular structures, to automate manufacturing and even accelerate the materials design loop. This workshop aims to bring together experimental and theoretical experts in applied AI from academia, national labs and industries to discuss the latest developments in machine learning tools and techniques to develop new methods to accelerate design, discovery, synthesis and characterization for a range of different emerging energy applications and technologies.

Focus areas include:
• Deep learning approaches to solve inverse problems in imaging including coherent imaging methods, tomographic methods and Lorentz TEM.
• Deep learning methods for automated feature detection and labeling in X-ray and electron imaging, including ultra-fast imaging.
• Machine learning and data mining for property prediction and inverse design of materials.
• Automatic differentiation applied to inverse problems in characterization.
• AI enabled feedback and experimental/instrumentation control.
• Machine learning techniques to bridge length scales in materials modeling.
• Generative AI for novel material and chemical synthesis.
• Reinforcement learning (RL) to guide simulation/experiment.

Abstracts Due 04/15/2021
Proceedings Plan Undecided
No additional information can be displayed at this time.

Questions about ProgramMaster? Contact