ProgramMaster Logo
Conference Tools for Materials Science & Technology 2019
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2019
Symposium Additive Manufacturing: Effective Production, Characterization, and Recycling of Powder Materials
Presentation Title Characterization of Gas Atomized Aluminum Alloy Powder for Additive Manufacturing Applications
Author(s) Kyle L. Tsaknopoulos, Victor Champagne, Danielle Cote
On-Site Speaker (Planned) Kyle L. Tsaknopoulos
Abstract Scope Research has shown that the microstructural features of the feedstock powder can directly correlate to the properties of the final consolidated material for additive manufacturing, particularly in solid-state additive. As powder properties are a function of their internal microstructure, it is therefore important to understand the microstructure in order to optimize the properties of the final parts. Powder properties can be controlled through the use of thermal treatment and analyzed through microstructural evolution. This research focuses on the thermal treatment of gas atomized aluminum alloy powders for solid-state additive manufacturing. The internal microstructure of the feedstock powder was analyzed using scanning and transmitting electron microscopy, energy dispersive x-ray spectroscopy and guided through the use of computational thermodynamic and kinetic models.
Proceedings Inclusion? Planned: At-meeting proceedings

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Additive Manufacturing Alloys: Influence of Powder Preparation Method in Aluminum Matrix Composites
Assessment of 316L Stainless Steel Powder Produced from Recycled Machining Chips for Closed Lifecycle Additive-Subtractive Manufacturing
Characterization of Gas Atomized Aluminum Alloy Powder for Additive Manufacturing Applications
Characterization of Nickel-base Superalloy MAR-M247 Powders by Synchrotron X-ray Computed Tomography
Characterization of Titanium Powder Produced from Battlefield Scrap for Additive Manufacturing
Determination of Viscosity of Metal Melts by High Temperature Rheometry
Effects of Recycling PREP and Plasma Atomized Ti-6Al-4V Powder from LENS Process
Exploring the Feasibility of Cryomilled Aluminum Alloy 5083 as Feed Stock Material for Additive Manufacturing
Hydrogen Assisted Magnesiothermic Reduction (HAMR) for Making Low-oxygen Ti Powder
Metal Particulate Produced by Modulation-assisted Machining
P3-26: Identifying Correlations between Metal Powder Properties and Binder Jet Print Settings to Optimize Process
Potentials and Risks in Hybrid Manufacturing
Powder Specification Needs for Steels in the LPBF Process
Surface Area as a Powder Morphology Probe
Synchrotron X-ray CT of AM Feedstock Metal Powder: A Validation of Metallographic Porosity Measurements.
Understanding Powder Morphology and Its Effect on Flowability through Computer Vision and Machine Learning In Additive Manufacturing
Understanding Surface Area Measurement for Improved Powder Characterization

Questions about ProgramMaster? Contact programming@programmaster.org