ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Integrative Materials Design III: Performance and Sustainability
Presentation Title 3D Tomography for Graphite Morphology Characterizations in Cast Irons Using High-energy X-rays
Author(s) Dileep Singh, Chih-Pin Andrew Chuang, John Hryn, Jonathan Almer, Peter Kenesei
On-Site Speaker (Planned) Dileep Singh
Abstract Scope For heavy duty vehicle engine application, development of cast irons with improved mechanical (fatigue, strength) properties is desired for enhanced performance, and consequently, potential for light-weighting. Properties (mechanical, thermal, castability) of cast irons are strongly dependent on the graphite content, 3D morphology, and their spatial arrangement within the material. In this study, we used x-ray tomography technique to perform 3D-characterization of graphite morphologies in different types of mixed graphite (spheroidal and compacted) cast irons. The spheroidal graphite (SG) in alloy-A showed a bi-modal distribution which suggests a two-step nucleation process during solidification. As for alloy-B, SGs exhibited a tri-modal distribution with an average diameter. The size distributions of SG show the complex nature of the graphite nucleation during the solidification of cast iron and the sensitivity of post-inoculant species on the graphite morphology. Further, tomography delineates the 3D morphologies of the compacted graphite structures as well. High energy 3D tomography technique can rapidly characterize internal structures, in a statistically meaningful manner, that can be correlated to processing and properties of the cast irons. Finally, radiography technique was employed to investigate in-situ solidification of the alloys. These studies can provide valuable information for optimizing Integrated Computational Materials Engineering based predictions. (The material used in this study is based upon work supported by the Department of Energy under Award Number(s) DE-EE0005980. Part of this research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.)
Proceedings Inclusion? Planned: Supplemental Proceedings volume


3D Tomography for Graphite Morphology Characterizations in Cast Irons Using High-energy X-rays
A Comparison of Fatigue Performance and Behavior of Ti-6Al-4V Made by Different Additive Manufacturing Technologies
A Microstructure-sensitive Location-specific Design Tool for Predicting the Yield and Creep Behavior of LSHR Ni-base Superalloy
A Multi-scale Model for Plasticity in BCC Metals
A New Methodology for Design of Cermets: ‘Green’ Replacement for Cobalt Binder in WC
Additive Materials Behavior: Importance of Collecting Data Along the Way
Adoption of Additive Manufacturing for Growth and Sustainment
Application of Integrated Computational Materials Engineering (ICME) and Accelerated Insertion of Materials (AIM) Tools to the Design and Development of Cost-effective Advanced Materials with Improved Performance and Sustainability
Cermets as Model Materials for Integrative Materials Design
Characterization of Recycled Additive Manufacturing Product
Characterization of Very High Cycle Fatigue in Ti-6Al-4V and Al-10Si-0.4Mg Alloys Fabricated by Laser Powder Bed Fusion
Constitutive Model Development and Validation via Mesoscale X-ray Diffraction Data
Data Science and Machine Learning Opportunities in Additive Manufacturing
Deformation Twinning as a Design Parameter for Magnesium Alloys
Design of Cold-spray 6061 Aluminum Alloys for Fatigue Crack Growth Resistance in Structural Components, Coatings, and Repairs
Design of Fatigue Resistant Ni-base Superalloys via Meso-scale Engineering
Designing a Resilient Carburization Heat Treating Process
Development of Advanced Beam Scan Strategies in Electron Beam Powder Bed Additive Manufacturing
Electric Vehicle Battery Design for Disassembly in Support of Materials Reuse
Experimental and Computational Studies of Fatigue Crack Propagation in Cast Al-Si Alloys Containing Secondary Phases
Fatigue Crack Growth in Structural Cast Aluminum Alloys: Microstructural Mechanisms, Modeling Strategies, and Integrated Design
Fatigue Crack Growth Modeling and Mechanisms in Al and Ni Engine Materials under Hot Compressive Dwell Conditions
Friction Stir Welding of Dissimilar Metals
Friction Stir Welding of Wrought and Cast Aluminum Alloys: Property Evaluations and Thermo-mechanical Modeling
From Mechanical Metamaterials to Simple Systems Made from Programmable Materials
Heterogeneous Deformation in High Purity Niobium
Hierarchical Microstructural Paradigms for Achieving Exceptional Strength and Ductility
Holistic Assessment of Beneficial Use of Industrial Byproducts in Structural Materials
Improved Formability of Aluminium Alloys at Low Temperatures for Automotive Application
Improving Power Plants’ Reliability through Root Cause Metallurgical Failure Analysis
In-situ Inspection of Laser-based Directed Energy Deposition Processes Using Laser Ultrasonics
In Situ Study of Strain Partitioning and Damage in Carbide Free Bainitic Steels Using Micro Digital Image Correlation
Increased Materials Reliability via Shot Peening: Simulations and Experiments
Insights into Multiscale Deformation Phenomena from In Situ TEM Nanomechnical Testing
Integrated Materials Theory, Modeling, and Data Analytics for Metal Additive Manufacturing
Integrating Computational and Experimental Methods to Quantify Microstructure Sensitivity of Thin Fatigue-critical Components
Integrating Design and Manufacturing in the Topology Optimization of High Performance Architected Materials and Components
Integrative Materials Design of Mo-Si-B Alloys
Magnesium Based Metal Matrix Nanocomposites - Processing and Properties
Material-aware Topology Optimization
Material Selection for Nuclear Engineering Designs a Challenge and Opportunity to Develop Graded Materials via Additive Manufacturing
Materials Design for Advanced Energy Generating Systems
Microstructure-sensitive Models for Predicting Near Surface Residual Stress Redistribution in P/M Nickel-base Superalloys
Microstructure Evolution of the High Temperature Intermetallic Phase Al4Fe1.7Si
Microstructure Evolution, Fatigue Crack Growth Mechanisms, and Effects of Heat Treatment in Ti-6Al-4V and Al-10Si-0.4Mg Alloys Fabricated by Laser and Electron Beam Powder Bed Fusion
Microstructure, Tensile Properties, and Fatigue Crack Growth Mechanisms at the Microstructure Scale in Inconel 718 Manufactured by Laser Engineered Net Shaping
Nuances in Addressing Multilevel Materials Design Problems
Optimizing HIP and Printing Parameters for EBM Ti-6Al-4V
Optimizing Wear and Corrosion Resistance of Superlattice Coatings through Atomic-scale Design
Phase-based Data: One Size Doesn’t Fit All
Plasticity in Textured Ti-6Al-4V under Tensile and Dwell-fatigue Loading
Probabilistic Prediction of Effect of Stress Ratio and Notches on Minimum Fatigue Life of Ti-6Al-4V
Science-based Qualification for Repair of Stainless Steel Components through Additive Manufacturing
Structure/Property Relationships and Failure Mechanisms in Multifunctional Materials: From Metallic Foams to Metallic Thin Films for Stretchable/Flexible Electronics, Solar Cells/LEDs and MEMS
The Effects of Microstructural Evolution during Hot- and Warm-forming of Aluminum Alloy Sheet on Pervice Performance
The Hierarchy of Microstructure Parameters Affecting Tensile Ductility in Cast and Forged Ti-834 Alloy during High Temperature Exposure
Thermally Reliable Materials of Clay and Organic By-products for Thermal Energy Storage
Thermodynamically Stable Nanocrystalline Al, Ni and Ag Alloys by Electrodeposition
Through-process Modeling for Alloy Design and Process Optimization for Cold Spray
“Alternative” Materials in the Green Building and Construction Sector: Examples, Barriers, and Environmental Analysis

Questions about ProgramMaster? Contact