ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling
Presentation Title Mixed-mode Fracture Behavior of Magnesium Alloys
Author(s) Vaishakh K V, Rajvardhan Vilasrao Sarnobat , Narasimhan Ramarathinam, Satyam Suwas
On-Site Speaker (Planned) Vaishakh K V
Abstract Scope Magnesium alloys have HCP crystal structure, possess tension-compression asymmetry and are highly anisotropic in nature. Mixed-mode (I-II) fracture experiments on rolled AZ31 Mg alloy are conducted using four-point bend (4-PB) specimens along with in-situ imaging. Digital Image Correlation (DIC) technique is used to analyze the images and map out the deformation and strain fields. With increase in the mode II component of loading, notch region undergoes excessive shear deformation and the notched fracture toughness, Jc, decreases monotonically. Detailed microstructural characterization revealed that this reduction in Jc is due to the change in fracture mechanism from void-coalescence to shear cracking. Further, under mixed-mode loading with higher mode II component, density of tensile twins near the notch tips and size of micro-voids decrease. Finite element analysis using a phenomenological, anisotropic plasticity model and polycrystal plasticity model are used to understand the experimental observations.
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Novel Approach to Join Large Coefficient of Thermal Expansion (CTE) Mismatched Thermoelectric (TE) Materials for High Temperature Applications
A Novel Experimental Methodology and Theoretical Framework for Enabling Macroscopic-like Deformation at the Microscale
A Novel Fracture Observation in SiC-based Ceramics Through In-situ Double Torsion Testing
A Novel X-ray Diffraction Simulation Framework for Rapid Thermo-mechanical Processes
Ab-initio Predictions of Plastic Anisotropy in BCC Metals
Acoustic Emission Measurements During In-situ Scanning Electron Microscopy Experiments to Quantifying Damage Accumulation and Crack Initiation in Microcrystals
Assessing Crack Propagation Along Brittle/Ductile Interfaces
Core Structure and Mobility of Dislocations in Alpha-Ti
Deformation Behavior of Additively Manufactured Cu-Fe Composites at Different Strain Rates
Development of TiAl Alloys for High Temperature Applications
Dislocation-grain Boundary Interaction Investigations Using In-situ DIC and EBSD
Effect of Loading Rate on Fracture Behavior of Magnesium Alloys
Examination of Local Microscale-microsecond Temperature Rise in HMX-HTPB Energetic Material under Impact Loading
Experimental and Numerical Investigation into Mechanical Degradation of Polymers and Polymer Composites
Fabrication of Microscale Specimens via Additive Manufacturing for In-situ Mechanical Testing
Fracture Across Length Scales in Tungsten: A Combined Experimental and Predictive Approach
High Throughput Creep Data Acquisition by Cantilever Bending Coupled to Digital Image Correlation
Impact of the Architecture / Texture on the Mechanical Behavior of Ni-microwires: How to Drive the Strength and Ductility
In-situ Dynamic Stress Field Detection using 2D Mechanical Raman Spectroscopy
In-situ Mechano-electrochemical Coupling of Structural Supercapacitor Electrodes
In-situ TEM Investigation of the Electroplasticity Phenomenon in Metals
In-situ TEM Investigation on Pyramidal Dislocations in Magnesium
Investigating Bulk Mechanical Properties on a Micro-scale: Micro-tensile Testing of Ultrafine Grained Ni-SiC Composite to Determine its Fracture Mechanism and Strain Rate Sensitivity
Micropillar Compression Testing with In-situ Raman Spectroscopy to Study Plastic Deformation in Vitreous Silica
Microstructure-driven Mechanical Properties of Explosives Quantified with In-situ Tomography
Microstructure and Micromechanical Field Evolution During Dynamic Recrystallization: A Crystal Plasticity-phase Field Simulation Study
Microtensile Testing of (fcc) Copper and (hcp) Titanium at Elevated Temperatures
Mixed-mode Fracture Behavior of Magnesium Alloys
Multiscale Modeling to Determine Bulk Material Property from Miniature Specimen Testing
Numerical Study of Plastic Deformation Mechanisms in a New Generation Fe-TiB2 Steel Composite Using a FFT-based Model
On Crystallographic and Material Hardening Aspects in Ductile Damage of Hexagonal Close Packed Metals
Quantifying Deformation Mechanics of High Temperature Alloys using In-situ and Digital Imaging Correlation (DIC) Testing Techniques
Shape Fidelity and Mechanical Response in Micro Pattern Replication by Molding
Synchronized Indentation and Raman Spectroscopy for Crystal Engineering
Synthesis and Mechanical Behavior of Freestanding NiTi Films with Varying Grain Sizes
Temperature Effects in the Microscale Deformability of Yttria Stabilized Zirconia Prepared by Spark Plasma Sintering
Understanding Pseudomorphic bcc Mg Under Extreme Conditions of Pressure, Temperature and High Strain Rates

Questions about ProgramMaster? Contact programming@programmaster.org