ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Powder Materials for Energy Applications
Presentation Title Energy Concentration Joining of Nuclear-grade SiC/SiC Composites for Next Generation Nuclear Reactors
Author(s) Geuntak Lee, Shirley Chan, Eugene Olevsky
On-Site Speaker (Planned) Geuntak Lee
Abstract Scope The energy and cost-efficient joining technology of nuclear-grade-silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) is experimentally and theoretically demonstrated. Two types of SiC/SiC composites fabricated by chemical vapor infiltration (CVI) and nano-powder infiltration and transient eutectic-phase technique (NITE) are used for the joining experiments. The joined SiC/SiC plates are obtained by the Energy Concentration Joining (ECJ) technique which focuses the electric current and heat near the joining interface. The joining strength is measured by a single lap offset test. For comparison, α-SiC tubes, which have low electrical conductivity, are joined and tested by the torsion test. Also, the localized mechanical property is assessed by the nanoindentation for SiC/SiC and Vickers hardness test for α-SiC. Before and after joining the microstructure and crystal structure of the SiC/SiC components are measured by a scanning electron microscope (SEM) and X-ray diffraction (XRD).
Proceedings Inclusion? Planned: Supplemental Proceedings volume

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Advanced Skutterudite-based Thermoelectric Unicouples by Near Net Shape Powder-based Fabrication for Future Space Power Applications
As-sintered Long Porous Inconel 625 Tubes for Hot Gas Filtration for the Production of High-purity Silicon
Bulk Supercrystalline Nanocomposites with Enhanced Mechanical Properties for Multifunctional Applications
Cold Spray Deposition of 304L Stainless-steel Powder on Used Fuel Dry Cask Storage Systems to Control Potential Stress Corrosion Cracking
Cubic Sub-micron BiFeO3 Powders for Improved Electrical Properties
Effect of Particle Spreading Dynamics on Powder Bed Quality
Energy Concentration Joining of Nuclear-grade SiC/SiC Composites for Next Generation Nuclear Reactors
Fabrication of Complex Shape Components by Spark-plasma Sintering Utilizing 3D-printed Controllable Interface
Fabrication of Uniform-sized Hemispherical Mesopores on Gold-coated Silver Nanocubes for Enzyme Immobilization
Flash Sintering: From Fundamental Science to Energy-saving Materials Processing
Influence of Powder Microstructure on Cold Spray Deposited Cr Coatings for High Temperature Oxidation Resistance
Investigation of the Powder Processing of Near-final Shape AlNiCo Magnets for Eventual Use in Electric Drive Motors
Is Additive Manufacturing a Competition or Complimentary Technology to Current Processing of Metals?
Materials for Nuclear Applications Produced by Powder-based Techniques
Microstructural Evolution of a Nanostructured Ferritic Alloy Composite during In-situ Ion Irradiation
Microstructural Evolution of NFA and Cr3C2@SiC-NFA Composite during Ion Irradiation
Miscibility Gap Alloy Thermal Storage Materials
Next Stage Development of Iron-based GARS Alloy Powders for Cold Spray Deposition of ODS Structural Materials for Extreme Environments
Novel Additive Manufacturing Process Design for U3Si2 Fuel
Peltier Effect during Spark Plasma Sintering of Boron Carbide
Powder Metal Technology for High-performance Materials with Harmonic-structure
Preparation of Zinc Carbonate Hydroxide Microparticles via Deamination Precipitation by Heating
Processing and Characteristics of Nanostructured Ferritic Alloys for Nuclear Reactor Applications
Superelastic Zirconia Powder for Shockwave Dissipation in Energy Infrastructure
Synthesis and Characterization of Lanthana Based ODS Steel for Nuclear Reactor Applications
Synthesis, Sintering, and Electrochemical Properties of Lithium Conducting Garnets from Molten Salt Fluxes for All-Solid-State Lithium Batteries
Toward New Flash and Energy Efficient Fabrication Processes based on Sintering

Questions about ProgramMaster? Contact programming@programmaster.org