ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Materials Research in Reduced Gravity
Presentation Title Dendrite Orientation Transition of fcc-Al in Bulk Al-Ge Alloys
Author(s) Sonja Steinbach, Matthias Kolbe, Sebastian Wirth, Laszlo Sturz, Gerhard Zimmermann, Florian Kargl, Maike Becker
On-Site Speaker (Planned) Sonja Steinbach
Abstract Scope Recent studies with thin Al-Ge samples [M. Becker, 2019] and with Al-Zn alloys [T. Haxhimali, 2006] have shown a transition from the accepted growth direction of fcc-Al to a new direction with increasing solute content, a phenomenon that is called ‘Dendrite Orientation Transition’ (DOT) [F. Gonzales, 2006] and which is explained not only by the effect of composition on the anisotropy of the solid-liquid interfacial energy, but also by the containment of the sample. Therefore observations made on microstructures growing in thin-film samples are not necessarily transferable to 3D conditions. To shed light on this phenomena in 3D and to avoid strong segregation effects occurring in samples with high density differences of the alloy components on ground, Al-46wt%Ge samples were processed in a new furnace set-up for directional solidification experiments in microgravity and are compared to lab experiments.
Proceedings Inclusion? Planned: Publication Outside of TMS

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

An Overview of a Proposed NASA Flight Experiment on W-heavy Glass-forming Alloy Composites
Chill-cooling of D2 Tool Steel Under Reduced Gravity Conditions
Comparison of Three-dimensional in situ Observations and Phase-field Simulations of Microstructure Formation during Directional Solidification of Transparent Alloys Aboard the ISS
Computational Fluid Dynamics Modeling of Oscillation Damping of Compound Liquid Droplets
Containerless Measurement of Thermophysical Properties of Ni-based Superalloys LEK94, MC2 and CMSX-10 in the Liquid Phase on Board the International Space Station
Crystallizations Kinetics of Glass-forming ZrCu-based Alloys
Current and Future Experiment Capabilities On-board the ISS for Materials Sciences
Dendrite Orientation Transition of fcc-Al in Bulk Al-Ge Alloys
Effect of Convection on Co-Si Solidification Pathway: Insights from Advanced Photon Source Synchrotron XRD
Effect of Inert Gas Atmosphere on Evaporation Losses and Density Measurement for Electromagnetically Levitated Superalloys
Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Aerospace Alloys
Experiment Preparation and Operation of the Electromagnetic Levitator EML on the ISS
In-situ Dynamics of Hybrid Eutectic Growth Front Morphologies: the Transparent Alloys Project
Kinetics of Solidification in Glass Forming Alloys Under Microgravity Conditions
Measurement of Diffusion Coefficients of Dopants in Ge and Si Melts
Metastable Phase Formation in Peritectic Systems Under Terrestrial and Reduced Gravity Conditions
Modeling Magnetohydrodynamics in Microgravity Electromagnetic Levitation Experiments
Modelling Liquid Droplet Oscillation and Laminar Damping in Reduced Gravity Conditions
Nucleation Fronts Growing in Al-Ni Melts Under Reduced Gravity
Numerical Modeling of Columnar to Equiaxed Transition During Directional Solidification of Al-7wt%Si Alloys in Reduced Gravity
Pattern Formation in Bulk Al-Al2Cu Eutectics: Results from a Recent Microgravity Experiment
Space for Science: ESA’s Microgravity Research Programme on Materials Science
The Enthalpy Method as an Alternative to Accurately Predicting Undercooled Solidification
Thermo-physical Properties of Fe-Si Alloys under Microgravity
Thermophysical Properties of Bulk Metallic Glasses Measured in the Liquid Phase on Board the International Space Station
Thermophysical Properties of SiGe Melts Measured on Board the ISS
Viscosity Measurement of Liquid Alloys in Microgravity and Experiment Parameters Optimization

Questions about ProgramMaster? Contact programming@programmaster.org