ProgramMaster Logo
Conference Tools for 2018 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2018 TMS Annual Meeting & Exhibition
Symposium Fracture: 65 Years after the Weibull Distribution and the Williams Singularity
Presentation Title Fracture Toughness of Silicon by Variable Temperature Micropillar Splitting
Author(s) Carmen Lauener, Ming Chen, Jeff Wheeler
On-Site Speaker (Planned) Jeff Wheeler
Abstract Scope Classically, silicon is known as a brittle material, whose sharp brittle-ductile transition (BDT) occurs within 1-2C at a temperature between 500 and 800C depending on the microstructure, strain rate, and crystal orientation. A recent study using the notched single cantilever beam geometry revealed a gradual increase in toughness, KC, with temperature, rather than a sharp BDT. Furthermore, the crack morphologies were observed to vary significantly, particularly between 300-400C. To investigate this phenomenon in greater detail, the pillar splitting geometry was employed in combination with lithographically produced silicon pillars. A transition in toughness was observed to begin between 150 and 175C with the values rising to ~1.7 MPa√m at 275C before the pillars ceased to split. In addition, experimental issues such as pillar manufacturing methods and the effect of inaccurate indenter positioning were investigated at ambient temperatures.
Proceedings Inclusion? Planned: Supplemental Proceedings volume


A Data-driven Approach to Predict Microstructurally Small Crack Evolution
A Probability Model for Stress Rupture Failure of Carbon Composites, Incorporating Weibull Fiber Strength Statistics, Local Fiber Load Sharing, and Matrix Creep
An Integrity Basis of Fracture Challenges
Applicability of Weibull Statistics for Micro- and Nano-scale Silicon Components
Comparison of Methods to Find the Weibull Stress Parameters
Composite Overwrapped Pressure Vessel (COPV) Life Test
Computational Procedure for Designing New Gen 3 Steels with High Formability and Ductile Fracture Resistance
Forward Propagation of Random Microstructural Features for Reliability Estimates of Engineering Structures
Fracture Behavior of High Performance Sheet Steel
Fracture Toughness of Silicon by Variable Temperature Micropillar Splitting
Grain and Sub-grain Level Strains ahead of an Evolving Fatigue Short Crack as Measured by X-ray Techniques
High Temperature Cracking Damage of Calcium Aluminate Cements
K-dominance of Atomistic Cracks
Limitations and Applicability of LEFM to Spalling Fracture in Single Crystal Semiconductors
NASA's Plan for Development and Transition of Computational Materials-based Capabilities for Next-generation Durability / Damage Tolerance and Additive Manufacturing
On the Experimental Evaluation of the Fracture Toughness of Shape Memory Alloys
On the Prediction of Failure in 6016 Aluminum Alloy Sheet by GISSMO Damage Model
Physical and Computational Aspects of Engineering Damage Mechanics
Predicting Joint Strength: Evaluating Interface Corner Stress Intensity Factor and Cohesive Zone Modeling Approaches
Re-tooling the Engineering Predictive Practices for Durability and Damage Tolerance
Singularities of Dynamic Cracks
The Complexity of Ductile Fracture
The Effect of Loading Rate on Fracture Toughness of Low Ductility Materials
Toughness, Roughness and Crack Path Engineering for Improved Ductile Fracture Resistance
Trends in Microstructure-sensitive Computational Approaches to Fatigue Cracking
Use of Weibull Distribution to Characterize High Performance Fibers
Using R-curves to Predict Fatigue Behavior in Crack Bridging Toughened Ceramics
Void Initiation during Ductile Rupture of Pure Metals
Weibull Analysis of High Strength Ni- and Fe-based Bulk Metallic Glasses

Questions about ProgramMaster? Contact