ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Society for Biomaterials: Biomaterial Applications
Presentation Title Development of Tissue-Specific, Perfusable Vasculature in Microphysiological Systems
Author(s) Kevin Ling, Arvind Srivatsava, Kannan Mannian, James McGrath, Ruchira Singh, Danielle S.W. Benoit
On-Site Speaker (Planned) Kevin Ling
Abstract Scope Advances in tissue engineering and tissue chip technology have catalyzed the rise of microphysiological systems (MPS) as an alternative to animal models for preclinical testing. MPS for vascularized tissues either forego perfused microvasculature or rely on oversimplified endothelial cell-lined fluidic channels. Microvascular tissues are 3D and have tissue specific molecular transport, angioarchitectural, and paracrine-tissue crosstalk properties. Previously, we developed an engineered extracellular matrix (eECM) comprised of poly(ethylene glycol) (PEG) hydrogels crosslinked with matrix metalloproteinase (MMP)-degradable peptides and functionalized with Arginine-Glycine-Aspartic Acid (RGD) cell adhesive ligands that supports vasculogenesis. We introduced this vasculogenic eECM into a novel MPS designed for microvascular network development. Specifically, we explored pressure/flow and eECM biophysical and biochemical cues to guide the development of in vivo-like perfusable microvasculature specific to bone, salivary gland, and the retina. We validated tissue specific angioarchitecture, perfusion, and paracrine crosstalk using immunohistochemistry, microsphere tracking, and western blot analysis.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Additive Manufacturing and Characterization of Stimuli-Responsive Biomaterials for Cardiovascular Stents
Altering the Size of Doxorubicin Loaded DOPE:DOPC Liposomes to Target Cancer-Associated Fibroblasts and Utilizing Size-dependent Selective Targeting
Antimicrobial Biomaterials Target Intracellular Infection
Bioactive Glass and Its Role in Healing
Bioactive Polyelectrolyte Layer by Layer Assembled Corrosion Resistant Coatings on Surface Treated MgAZ31 Alloys
Biodegradable Ceramic Coating on Lithium-Aluminum-Zinc (LAZ) and Lithium- Zinc (LZ) Magnesium Alloys Using Micro-arc Oxidation
Biodegradable Magnesium Fixation Wires for Bone Healing
Combinatorial Approaches to Blood Contacting Materials
Development of a Microfluidic Blood-Vessel-on-Chip Model
Development of Natural Polymer-based Hydrogels for Corneal Tissue Engineering Applications
Development of Tissue-Specific, Perfusable Vasculature in Microphysiological Systems
Electrospraying Chitosan on Co-electrospun PCL/PVA Composite with Mesoporous Silica Particles to Release Curcumin for Skin Tissue Engineering Application
Exploring Single Electrospun PLGA Fiber Mechanics and Fiber Mat Applications in Cardiac Bioengineering
Exploring the Potential of Strontium Substituted Amorphous Calcium Phosphate and Dicalcium Phosphate Dihydrate Based Hydroxyapatite Forming Bone Cement
Harnessing Biological Functions in Dental Materials
Harnessing Perfluorocarbons to Enhance Oxygenation in Engineered Tissues
Hybrid 3D Bioprinting of Tissue Engineering Scaffolds with Dual Delivery Capability for Anticancer Drugs
Hydroxyapatite Loaded with 2-heptylcyclopropane-1-carboxylic Acid Inhibits S. Aureus Biofilm Formation
In Vitro Biochemical Analysis of Bioactive Glass Ionomer Cement (45S5) with Citric Acid as Setting Modifier
Magnesium-Based Nanocomposites for Bone Fracture Repair
Novel Biodegradable Porous Magnesium Alloy Scaffolds for Critical Sized Calvarial Bone Defect Reconstruction
Plant Polymer for Climate and Health Management
Platinum Wire-based Aptasensors Exploiting Self-assembled Monolayer (SAM) Components for Cardiac Biomarker Detection
Silanized Titanium for Delivery of Hydrophobic Therapeutic in Aqueous Environment
Silver Doped Titanium Oxide Layers for Improved Photocatalytic Activity and Potential Antibacterial Properties of Titanium Implants
Three-dimensional (3D) Iron Oxide Nanoparticles via Green Synthesis: A Review on Their Synthesis and Antibacterial Application
Utilizing Thiolyne Click Chemistry to Target Cancer Cells Using Folate Conjugated Liposomes

Questions about ProgramMaster? Contact programming@programmaster.org