ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Additive Manufacturing and Cellular/Lattice Structures: Designs, Realization and Applications
Presentation Title Interlocking Metasurfaces: A Joining Technology for Additive
Author(s) Ophelia Bolmin, Benjamin Young, Philip Noell, Brad Boyce
On-Site Speaker (Planned) Ophelia Bolmin
Abstract Scope The assembly of additively manufactured parts, including both monolithic parts and lattices, has largely been restricted to traditional joining technologies (e.g., welds, adhesives, bolts). In this talk, we present a novel AM-enabled joining technology: interlocking metasurfaces (ILM). ILMs are architected arrays of mating features that create non-permanent joints for additively manufactured parts. We define a design framework and demonstrate how AM enables rapid exploration of the ILM design space. Various designs are fabricated in a broad range of materials from polymers to metals and the performance of selected designs is experimentally evaluated. The selected designs create mechanically robust integral attachment solutions for complex structures such as lattices and vessels. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Printed Fibrous Cellular Multifunctional Structures
A-1: Cytotoxicity of Strontium Calcium Polyphosphate on MC3T3-E1 Cells in 3D Printed Alginate/Collagen Scaffolds
AM-Fabricated Plate Lattice Structures for Impact Applications
Design, Manufacture, Modelling and Testing of Honeycombs with Aperiodic Order
Effect of Geometrical Characteristics on the Mechanical Properties of Co-Cr-Mo Triply Periodic Minimal Surface Lattices Fabricated by Laser-Powder Bed Fusion
Effects of TiB2 in an Al-Cu-Sc Alloy in the Hybrid Investment Casting Process
Enabling Novel Porous Noise Absorbers via Additive Manufacturing
Evaluation of Structural Robustness in Additively Manufactured Lattice Structures
Fabrication, Microstructure and High Temperature Mechanical Properties of Inconel 718 Lattice Structures Manufactured by Laser Powder Bed Fusion
Interlocking Metasurfaces: A Joining Technology for Additive
Laser-based 4D Printing of Ni-Mn-Ga Magnetic Shape Memory Alloys Lattice Structures
Localized Strain, Microstructure, and Property Control of Ti-5553 Lattice Materials
Multi-scale Simulations for Improving the Design of Additive Manufactured Shock Absorbers
Optimized Dissolvable Support Design for 316L Stainless Steel Produced by Laser Powder Bed Fusion
Performance of Titanium Alloy Lattice Structures in Quasi-static and High Strain Rate Environments
Permeable Additive Manufacturing (PermiAM) for Rocketry
Prediction of Mechanical Properties of Ceramic Honeycombs by Polarimetry Measurements of Epoxy Resin Prototypes.
Progressive Nature of Failure of 3D Lattices under Compressive, Shear and Hydrostatic Loads
Specific Energy Absorption of 3D Printed Octet-Truss Lattice Structures with Hollow Struts
Synchronous Involvement of Topology and Microstructure to Design Additively Manufactured Lattice Structure
The Effects of Powder Feedstock and Process Parameter on the Material Characteristics of Ti6Al4V Thin Wall Features Fabricated by Laser Powder Bed Fusion Additive Manufacturing

Questions about ProgramMaster? Contact programming@programmaster.org